Submodular Function Maximization via the Multilinear Relaxation and Contention Resolution Schemes

Rico Zenklusen

MIT

Joint work with Chandra Chekuri and Jan Vondrák

Outline

1 Introduction

- **2** General framework
- **3** Maximizing the multilinear extension
- **4** Rounding through contention resolution schemes
- **5** An optimal CR-scheme for matroids
- **6** Conclusions

Outline

1 Introduction

- **2** General framework
- **3** Maximizing the multilinear extension
- **4** Rounding through contention resolution schemes
- **5** An optimal CR-scheme for matroids
- **6** Conclusions

Submodular functions

• Let N be a finite ground set, n := |N|.

Definition (submodular function)

A set function $f : 2^N \to \mathbb{R}$ is submodular if it has diminishing returns:

$$f(\underbrace{A+i}_{:=A\cup\{i\}}) - f(A) \ge f(B+i) - f(B) \qquad \forall A \subseteq B \subseteq N, \forall i \in N \setminus B$$

Equivalent definition: $f(A) + f(B) \ge f(A \cup B) + f(A \cap B)$ $\forall A, B \subseteq N$.

 \longrightarrow Submodularity is a natural property of utility functions.

• f is monotone $\Leftrightarrow f(A) \leq f(B) \quad \forall A \subseteq B.$

Examples of subm. funct. beyond utility functions

Example I: coverage function

Let U be a finite ground set and $W_i \subseteq U$ for $i \in N$.

$$f(A) = \left| \bigcup_{i \in A} W_i \right| \quad \forall A \subseteq N$$

Examples of subm. funct. beyond utility functions

Example I: coverage function

Let U be a finite ground set and $W_i \subseteq U$ for $i \in N$.

$$f(A) = \left| \bigcup_{i \in A} W_i \right| \quad \forall A \subseteq N$$

Example II: cut function

Let G = (V, E) be a graph with edge weights $w : E \rightarrow \mathbb{R}_+$.

$$f(U) = w(\delta(U)) = w(E(U, V \setminus U)) \ \forall U \subseteq V$$

Examples of subm. funct. beyond utility functions

Example I: coverage function

Let U be a finite ground set and $W_i \subseteq U$ for $i \in N$.

$$f(A) = \left| \bigcup_{i \in A} W_i \right| \quad \forall A \subseteq N$$

Example II: cut function Let G = (V, E) be a graph with edge weights $w : E \to \mathbb{R}_+$.

$$f(U) = w(\delta(U)) = w(E(U, V \setminus U)) \ \forall U \subseteq V$$

Other examples

• Entropy function $H: 2^N \to \mathbb{R}_+$ of random variables $\{X_i\}_{i \in N}$:

 $H(A) := H(\{X_i \mid i \in A\}) \quad \forall A \subseteq N.$

Reduction of connection costs in facility location problems.

Optimizing submodular functions

Access to f by value oracle: can query f(A) for $A \subseteq N$.

Optimizing submodular functions

Access to f by value oracle: can query f(A) for $A \subseteq N$.

Minimization vs. maximization

- Unconstrained minimization of submodular functions can be done efficiently.
- Unconstrained maximization of submodular functions is hard:
 - Currently best approximation ratio: 0.41. (Oveis Gharan and Vondrák, 2011)
 - No > 0.5-approx without exponentially many calls to value oracle. (Feige et al., 2007)
 - Remains hard in many settings outside the value oracle model (MAX-CUT, MAX-K-COVER, ...).
- $\Theta(1)$ -approximations often achievable under additional constraints.

Optimizing submodular functions

Access to f by value oracle: can query f(A) for $A \subseteq N$.

Minimization vs. maximization

- Unconstrained minimization of submodular functions can be done efficiently.
- Unconstrained maximization of submodular functions is hard:
 - Currently best approximation ratio: 0.41. (Oveis Gharan and Vondrák, 2011)
 - No > 0.5-approx without exponentially many calls to value oracle. (Feige et al., 2007)
 - Remains hard in many settings outside the value oracle model (MAX-CUT, MAX-K-COVER, ...).
- $\Theta(1)$ -approximations often achievable under additional constraints.

Under which constraints is it possible to approximately maximize submodular functions?

Previous results on SFM (subm. funct. max.)

• Assume $f : 2^N \to \mathbb{R}_+$ (otherwise: no hope for good approximations).

Approaches for SFM are based either on

- a) combinatorial local search procedures (replacing elements), or
- b) relaxation and rounding techniques.

Constraint type	Linear max.	Monotone subm. max.	Subm. max.
O(1) knapsacks	$1-\epsilon$	$1-1/e-\epsilon^{-1}$	$0.25 - \epsilon^{-1}$
1 matroid	1	$1 - 1/e^{-2}$	0.325 ³
k = O(1) matroids	$1/(k-1+\epsilon)^{-4}$	$1/(k+\epsilon)^{-4}$	$1/(k+1+\frac{1}{k-1}+\epsilon)^4$

¹Kulik et al. (2011)
²Calinescu et al. (2011)
³Oveis Gharan and Vondrák (2011)
⁴Lee et al. (2009)

Previous results on SFM (subm. funct. max.)

• Assume $f : 2^N \to \mathbb{R}_+$ (otherwise: no hope for good approximations).

Approaches for SFM are based either on

- a) combinatorial local search procedures (replacing elements), or
- b) relaxation and rounding techniques.

Constraint type	Linear max.	Monotone subm. max.	Subm. max.
O(1) knapsacks	$1-\epsilon$	$1-1/e-\epsilon^{-1}$	$0.25 - \epsilon^{-1}$
1 matroid	1	$1 - 1/e^{-2}$	0.325 ³
k = O(1) matroids	$1/(k-1+\epsilon)^{-4}$	$1/(k+\epsilon)^{-4}$	$1/(k+1+\frac{1}{k-1}+\epsilon)^4$

Issue with previous approaches

Typically heavily tailored to the underlying constraints.

 \rightarrow e.g., despite progress on knapsack and matroid constraints, not much was known about a combination of those constraints.

```
<sup>1</sup>Kulik et al. (2011)
<sup>2</sup>Calinescu et al. (2011)
<sup>3</sup>Oveis Gharan and Vondrák (2011)
<sup>4</sup>Lee et al. (2009)
```

Previous results on SFM (subm. funct. max.)

• Assume $f : 2^N \to \mathbb{R}_+$ (otherwise: no hope for good approximations).

Approaches for SFM are based either on

- a) combinatorial local search procedures (replacing elements), or
- b) relaxation and rounding techniques.

Constraint type	Linear max.	Monotone subm. max.	Subm. max.
O(1) knapsacks	$1-\epsilon$	$1-1/e-\epsilon^{-1}$	$0.25 - \epsilon^{-1}$
1 matroid	1	$1 - 1/e^{-2}$	0.325 ³
k = O(1) matroids	$1/(k-1+\epsilon)^{-4}$	$1/(k+\epsilon)^{-4}$	$1/(k+1+\frac{1}{k-1}+\epsilon)^4$

Issue with previous approaches

Typically heavily tailored to the underlying constraints.

 \rightarrow e.g., despite progress on knapsack and matroid constraints, not much was known about a combination of those constraints.

Is there some more versatile framework?

```
<sup>1</sup>Kulik et al. (2011)
<sup>2</sup>Calinescu et al. (2011)
<sup>3</sup>Oveis Gharan and Vondrák (2011)
<sup>4</sup>Lee et al. (2009)
```

Our results

We introduce a rather general relaxation-and-rounding framework that allows for combining constraints (at the price of a slightly weaker approximation quality).

(Some) new results due to our framework

Constraint type	Linear max.	Monot. subm. max.	Subm. max.
O(1) knapsacks	$1-\epsilon$	$1 - 1/e - \epsilon$	0.325
	1 0	1 1/0 0	$0.25 - \epsilon$
k = O(1) matroids	$1/(k-1+\epsilon)$	$1/(k+\epsilon)$ for $k \ge 2$	$1/(k+1+\frac{1}{k-1}+\epsilon)$
k matr. & $\ell = O(1)$ knaps.	0.6/k	0.38/k	0.19/ <i>k</i>
k -matchoid & ℓ -sparse PIP	$\Omega(1/(k+\ell))$	$\Omega(1/(k+\ell))$	$\Omega(1/(k+\ell))$
UFP on paths and trees	$\Omega(1)$	$\Omega(1)$	$\Omega(1)$

new results

previous results

Our results

We introduce a rather general relaxation-and-rounding framework that allows for combining constraints (at the price of a slightly weaker approximation quality).

(Some) new results due to our framework

Constraint type	Linear max.	Monot. subm. max.	Subm. max.
O(1) knapsacks	$1-\epsilon$	$1 - 1/e - \epsilon$	0.325
	- C	1 1/C C	$0.25 - \epsilon$
k = O(1) matroids	$1/(k-1+\epsilon)$	$1/(k+\epsilon)$ for $k \ge 2$	$1/(k+1+\frac{1}{k-1}+\epsilon)$
k matr. & $\ell = O(1)$ knaps.	0.6/k	0.38/ <i>k</i>	0.19/ <i>k</i>
k-matchoid & ℓ-sparse PIP	$\Omega(1/(k+\ell))$	$\Omega(1/(k+\ell))$	$\Omega(1/(k+\ell))$
UFP on paths and trees	$\Omega(1)$	$\Omega(1)$	$\Omega(1)$

- new results
- previous results

Remark

The constraints $\mathcal{F} \subseteq 2^N$ we consider are all closed under inclusion, i.e.,

 $A \in \mathcal{F}, B \subseteq A \Rightarrow B \in \mathcal{F}.$

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

1. Create relaxed problem

- i) Relax constraints: $\mathcal{F} \subseteq 2^N \rightsquigarrow \text{ polytope } P \subseteq [0, 1]^N$
- ii) Extend submodular function: $f \rightsquigarrow F : [0,1]^N \rightarrow \mathbb{R}_+$ ($F(\mathbf{1}_S) = f(S) \forall S \subseteq N$).
- **2.** Maximize F over $P \rightsquigarrow x \in P$
- **3. Rounding:** $x \rightsquigarrow I(x) \in \mathcal{F}$

i)
$$x \rightsquigarrow R(x) \subseteq N$$
 with

$$\Pr[i \in R(x)] = x_i$$

ii) $R(x) \rightsquigarrow I(x) \in \mathcal{F}$, with $I(x) \subseteq R(x)$ and

1. Create relaxed problem

- i) Relax constraints: $\mathcal{F} \subseteq 2^N \rightsquigarrow \text{ polytope } P \subseteq [0, 1]^N$
- **ii)** Extend submodular function: $f \rightsquigarrow F : [0,1]^N \rightarrow \mathbb{R}_+$ ($F(\mathbf{1}_S) = f(S) \forall S \subseteq N$).
- **2.** Maximize F over $P \rightsquigarrow x \in P$
- **3. Rounding:** $x \rightsquigarrow I(x) \in \mathcal{F}$

i)
$$x \rightsquigarrow R(x) \subseteq N$$
 with

 $\Pr[i \in R(x)] = x_i$

ii) $R(x) \rightsquigarrow I(x) \in \mathcal{F}$, with $I(x) \subseteq R(x)$ and

1. Create relaxed problem

- i) Relax constraints: $\mathcal{F} \subseteq 2^N \rightsquigarrow \text{ polytope } P \subseteq [0, 1]^N$
- ii) Extend submodular function: $f \rightsquigarrow F : [0,1]^N \rightarrow \mathbb{R}_+$ ($F(\mathbf{1}_S) = f(S) \forall S \subseteq N$).
- **2.** Maximize F over $P \rightsquigarrow x \in P$
- **3. Rounding:** $x \rightsquigarrow I(x) \in \mathcal{F}$

i)
$$x \rightsquigarrow R(x) \subseteq N$$
 with

 $\Pr[i \in R(x)] = x_i$

ii) $R(x) \rightsquigarrow I(x) \in \mathcal{F}$, with $I(x) \subseteq R(x)$ and

1. Create relaxed problem

- i) Relax constraints: $\mathcal{F} \subseteq 2^N \rightsquigarrow \text{ polytope } P \subseteq [0, 1]^N$
- ii) Extend submodular function: $f \rightsquigarrow F : [0,1]^N \rightarrow \mathbb{R}_+$ ($F(\mathbf{1}_S) = f(S) \forall S \subseteq N$).
- **2.** Maximize F over $P \rightsquigarrow x \in P$
- **3.** Rounding: $x \rightsquigarrow I(x) \in \mathcal{F}$

i)
$$x \rightsquigarrow R(x) \subseteq N$$
 with

 $\Pr[i \in R(x)] = x_i$

ii) $R(x) \rightsquigarrow I(x) \in \mathcal{F}$, with $I(x) \subseteq R(x)$ and

1. Create relaxed problem

- i) Relax constraints: $\mathcal{F} \subseteq 2^N \rightsquigarrow \text{ polytope } P \subseteq [0, 1]^N$
- ii) Extend submodular function: $f \rightsquigarrow F : [0,1]^N \rightarrow \mathbb{R}_+$ ($F(\mathbf{1}_S) = f(S) \forall S \subseteq N$).
- **2.** Maximize F over $P \rightsquigarrow x \in P$
- **3. Rounding:** $x \rightsquigarrow I(x) \in \mathcal{F}$
 - i) $x \rightsquigarrow R(x) \subseteq N$ with

 $\Pr[i \in R(x)] = x_i$

ii) $R(x) \rightsquigarrow I(x) \in \mathcal{F}$, with $I(x) \subseteq R(x)$ and

1. Create relaxed problem

- i) Relax constraints: $\mathcal{F} \subseteq 2^N \rightsquigarrow \text{ polytope } P \subseteq [0, 1]^N$
- ii) Extend submodular function: $f \rightsquigarrow F : [0,1]^N \rightarrow \mathbb{R}_+$ ($F(\mathbf{1}_S) = f(S) \forall S \subseteq N$).
- **2.** Maximize F over $P \rightsquigarrow x \in P$
- **3. Rounding:** $x \rightsquigarrow I(x) \in \mathcal{F}$
 - i) $x \rightsquigarrow R(x) \subseteq N$ with

$$\Pr[i \in R(x)] = x_i$$

ii) $R(x) \rightsquigarrow I(x) \in \mathcal{F}$, with $I(x) \subseteq R(x)$ and

Shooting for a good extension

• Multilinear extension: $F(x) := \sum_{S \subseteq N} f(S) \prod_{i \in S} x_i \prod_{i \in N \setminus S} (1 - x_i) = E[f(R(x))]$, where

 $R(x) \subseteq N$: random set with $\Pr[i \in R(x)] = x_i$ independently for $i \in N$.

- Easy to approximately evaluate through Monte-Carlo sampling.
- Behaves nicely w.r.t. indep. rounding (would lead to constraint violations).

Shooting for a good extension

• Multilinear extension: $F(x) := \sum_{S \subseteq N} f(S) \prod_{i \in S} x_i \prod_{i \in N \setminus S} (1 - x_i) = E[f(R(x))]$, where

 $R(x) \subseteq N$: random set with $\Pr[i \in R(x)] = x_i$ independently for $i \in N$.

- Easy to approximately evaluate through Monte-Carlo sampling.
- Behaves nicely w.r.t. indep. rounding (would lead to constraint violations).

► Lovász extension:
$$f^{L}(x) := \min \left\{ \sum_{S \subseteq N} \alpha_{S} f(S) \middle| \sum_{S \subseteq N, i \in S} \alpha_{S} = x_{i}, \sum_{S \subseteq N} \alpha_{S} = 1, \alpha_{S} \ge 0 \right\}$$

- Convex
- Easy to evaluate
- Hard to maximize

• Concave closure: $f^+(x) := \max\left\{ \left. \sum_{S \subseteq N} \alpha_S f(S) \right| \sum_{S \subseteq N, i \in S} \alpha_S = x_i, \sum_{S \subseteq N} \alpha_S = 1, \alpha_S \ge 0 \right\}$

- Concave
- Hard to evaluate

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

- **4** Rounding through contention resolution schemes
- **5** An optimal CR-scheme for matroids
- **6** Conclusions

Maximizing F over solvable down-closed polytopes P

Definitions

- ▶ *P* is down-closed (or down-monotone) if $x \in P, y \le x \Rightarrow y \in P$.
- ► *P* is solvable if linear functions can be optimizing efficiently over *P*.

Our main results here

- We can find $y \in P$ with $F(y) \ge 0.25 \cdot \max\{F(x) \mid x \in P\}$.
- We can find $y \in P$ with $F(y) \ge 0.325 \cdot \max\{F(x) \mid x \in P \cap \{0,1\}^N\}$.
- ▶ Next slides: very short sketch of the 0.25-approx due to its simplicity.
- To get some intuition let's first consider a related 1/3-approx for unconstrained SFM (which is a variation of an algo of Feige et al. (2007)).

Getting some intuition

A related 1/3-approx for unconstrained SFM

$\frac{1}{2}$ -approx for unconstrained SFM

- **1.** Find a local opt $X \subset N$:

```
f(X \pm i) \leq f(X) \quad \forall i \in \mathbb{N}.
2. Find a local opt Y \subseteq N \setminus X: f(Y \pm i) \leq f(Y) \quad \forall i \in N \setminus X.
```

3. Return the better of X and Y.

Proof.

- Let Z be a global opt.
- X local opt:
 - $f(X) \geq f(X \cup Z)$, • $f(X) > f(X \cap Z)$.
- Y local opt:
 - $f(Y) > f(Y \cup (Z \setminus X)).$

Sketch of the 0.25-approx for down-closed P

0.25-approx

1. Find an (approximate) local opt x of F over P, i.e.,

$$abla F(x) \cdot (v-x) \leq 0 \quad \forall v \in P.$$

- 2. Find an (approximate) local opt y of F over $Q = \{v \in P \mid v \le 1 x\}$, $\nabla F(y) \cdot (v - y) \le 0 \quad \forall v \in Q.$
- **3.** Return the better of x and y.

Outline

1 Introduction

- **2** General framework
- **3** Maximizing the multilinear extension

4 Rounding through contention resolution schemes

- **5** An optimal CR-scheme for matroids
- **6** Conclusions

Contention resolution (CR) schemes

► $F(x) = \mathbf{E}[f(R(x))] \Rightarrow$ independent rounding preserves value in expectation but is likely to violate constraints.

Contention resolution (CR) schemes

► $F(x) = \mathbf{E}[f(R(x))] \Rightarrow$ independent rounding preserves value in expectation but is likely to violate constraints.

Plan: accept lower value for expectation to obtain feasibility,

maintain "sufficient" independence in rounding process to get good expectation.

Contention resolution (CR) schemes

► $F(x) = \mathbf{E}[f(R(x))] \Rightarrow$ independent rounding preserves value in expectation but is likely to violate constraints.

Plan: accept lower value for expectation to obtain feasibility,

maintain "sufficient" independence in rounding process to get good expectation.

Definition: balanced CR scheme

A *c*-balanced CR scheme for *P* is a (random) procedure parametrized by $x \in P$, that selects a set $I \in \mathcal{F}$, $I \subseteq R(x)$ with

$$\Pr[i \in I] \ge c \cdot x_i \quad \Leftrightarrow \quad \Pr[i \in I \mid i \in R(x)] \ge c \qquad \forall i \in N$$

Furthermore, the scheme is called

monotone if

$$\Pr[i \in I \mid R(x) = R_1] \ge \Pr[i \in I \mid R(x) = R_2] \qquad \forall i \in R_1 \subseteq R_2 \subseteq N_2$$

and strict if

$$\Pr[i \in I \mid i \in R(x)] = c \quad \forall i \in N.$$

Rounding guarantees

Theorem (follows from Bansal et al. (2010))

Let $x \in P$, and let I(x) be the output of a monotone and strict *c*-balanced CR scheme. Then

 $\mathbf{E}[f(I(x))] \ge c \cdot F(x).$

Rounding guarantees

Theorem (follows from Bansal et al. (2010))

Let $x \in P$, and let I(x) be the output of a monotone and strict *c*-balanced CR scheme. Then

 $\mathbf{E}[f(I(x))] \ge c \cdot F(x).$

Remarks

- Strictness is only needed for non-monotone f, and can be avoided by a simple post-processing of I.
- The rounding procedure is oblivious to *f*.

Proof of rounding guarantee (I)

- We number the elements $N = [n] := \{1, \ldots, n\}$.
- ▶ For $A \subseteq N$, $i \in N$, let $f_A(i) = f(A+i) f(A)$.

$$\mathbf{E}[f(I)] = f(\emptyset) + \sum_{i=1}^{n} \mathbf{E}\left[f(I \cap [i]) - f(I \cap [i-1])\right].$$

want to show:
$$\mathbf{E}[f(I \cap [i]) - f(I \cap [i-1])] \ge \Pr[i \in R] \cdot c \cdot \mathbf{E}[f_{R \cap [i-1]}(i)]$$

This then implies

We

$$f(\emptyset) + \sum_{i=1}^{n} \mathbf{E}[f(I \cap [i]) - f(I \cap [i-1])] \ge c \left[f(\emptyset) + \sum_{i=1}^{n} \Pr[i \in R] \mathbf{E}[f_{R \cap [i-1]}(i)] \right]$$
$$= c \left[f(\emptyset) + \sum_{i=1}^{n} \mathbf{E}[f(R \cap [i]) - f(R \cap [i-1])] \right]$$
$$= c \cdot F(x).$$

Proof of rounding guarantee (II)

To show: $|\mathbf{E}[f(I \cap [i]) - f(I \cap [i-1])] \ge \Pr[i \in R] \cdot c \cdot \mathbf{E}[f_{R \cap [i-1]}(i)]$

$$\begin{aligned} \mathbf{E}[f(I \cap [i]) - f(I \cap [i-1])] &= \mathbf{E}[\mathbf{1}_{i \in I} f_{I \cap [i-1]}(i)] \\ &\geq \mathbf{E}[\mathbf{1}_{i \in I} f_{R \cap [i-1]}(i)] \\ &\geq \mathbf{E}_{R}[\mathbf{E}_{I}[\mathbf{1}_{i \in I} f_{R \cap [i-1]}(i) \mid R]] \\ &= \mathbf{E}_{R}[\mathbf{E}_{I}[\mathbf{1}_{i \in I} \mid R] f_{R \cap [i-1]}(i)] \\ &\geq \Pr[i \in R] \cdot \mathbf{E}[\Pr[i \in I \mid R] f_{R \cap [i-1]}(i) \mid i \in R] \end{aligned}$$

On the product space associated with distribution of *R* conditioned on $i \in R$:

- ▶ $Pr[i \in I \mid R]$ is non-decreasing \leftarrow monotonicity of CR scheme,
- $f_{R\cap[i-1]}(i)$ is non-decreasing \leftarrow submodularity of f.
- \Rightarrow we can apply FKG.

 $\begin{aligned} \mathbf{E}_{R}[\Pr[i \in I \mid R] f_{R \cap [i-1]}(i) \mid i \in R] \\ & \stackrel{FKG}{\geq} \mathbf{E}_{R}[\Pr[i \in I \mid R] \mid i \in R] \cdot \mathbf{E}_{R}[f_{R \cap [i-1]}(i) \mid i \in R] \\ & = \Pr[i \in I \mid i \in R] \cdot \mathbf{E}[f_{R \cap [i-1]}(i)] \\ & \stackrel{strictness}{=} c \cdot \mathbf{E}[f_{R \cap [i-1](i)}]. \end{aligned}$
Often, \mathcal{F} is composed of simpler constraints: $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2 \implies P = P_1 \cap P_2$.

Goal: combine monotone (and strict) c_1 -balanced CR scheme for P_1 with monotone (and strict) c_2 -balanced CR scheme for P_2 to obtain one for P.

Often, \mathcal{F} is composed of simpler constraints: $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2 \implies P = P_1 \cap P_2$.

Goal: combine monotone (and strict) c_1 -balanced CR scheme for P_1 with monotone (and strict) c_2 -balanced CR scheme for P_2 to obtain one for P.

Often, \mathcal{F} is composed of simpler constraints: $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2 \implies P = P_1 \cap P_2$.

Goal: combine monotone (and strict) c_1 -balanced CR scheme for P_1 with monotone (and strict) c_2 -balanced CR scheme for P_2 to obtain one for P.

Monotonicity is preserved.

Resulting CR scheme is c1 c2-balanced:

 $\Pr[i \in I \mid i \in R(x)] = \mathbf{E}[\mathbf{1}_{i \in I_1} \mathbf{1}_{i \in I_2} \mid i \in R(x)] \stackrel{FKG}{\geq} \underbrace{\mathbf{E}[\mathbf{1}_{i \in I_1} \mid i \in R(x)]}_{\mathbf{E}[\mathbf{1}_{i \in I_2} \mid i \in R(x)]} \underbrace{\mathbf{E}[\mathbf{1}_{i \in I_2} \mid i \in R(x)]}_{\mathbf{E}[\mathbf{1}_{i \in I_2} \mid i \in R(x)]}$

 $=C_1$

 $=c_2$

Often, \mathcal{F} is composed of simpler constraints: $\mathcal{F} = \mathcal{F}_1 \cap \mathcal{F}_2 \implies P = P_1 \cap P_2$.

Goal: combine monotone (and strict) c_1 -balanced CR scheme for P_1 with monotone (and strict) c_2 -balanced CR scheme for P_2 to obtain one for P.

Monotonicity is preserved.

Resulting CR scheme is c1 c2-balanced:

 $\Pr[i \in I \mid i \in R(x)] = \mathbf{E}[\mathbf{1}_{i \in I_1} \mathbf{1}_{i \in I_2} \mid i \in R(x)] \stackrel{FKG}{\geq} \underbrace{\mathbf{E}[\mathbf{1}_{i \in I_1} \mid i \in R(x)]}_{=\varsigma_1} \underbrace{\mathbf{E}[\mathbf{1}_{i \in I_2} \mid i \in R(x)]}_{=\varsigma_2}.$

- Combining k schemes being c-balanced $\rightarrow c^k$ -balanced scheme.
- Our goal: obtain $\Omega(1/k)$ -balanced CR scheme.

Definition: (b, c)-balanced **CR** scheme $(b, c \in (0, 1])$

A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by $x \in P$, that selects a set $I \in \mathcal{F}$, $I \subseteq R(b \cdot x)$ with

 $\Pr[i \in I \mid i \in R(b \cdot x)] \ge c \quad \forall i \in N.$

Definition: (b, c)-balanced CR scheme $(b, c \in (0, 1])$ A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by $x \in P$, that selects a set $I \in \mathcal{F}$, $I \subseteq R(b \cdot x)$ with $\Pr[i \in I \mid i \in R(b \cdot x)] > c \qquad \forall i \in N.$

A (b, c)-balanced CR scheme is a special case of a *bc*-balanced CR scheme.

Definition: (b, c)-balanced CR scheme $(b, c \in (0, 1])$ A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by $x \in P$, that selects a set $I \in \mathcal{F}$, $I \subseteq R(b \cdot x)$ with $\Pr[i \in I \mid i \in R(b \cdot x)] > c \qquad \forall i \in N.$

A (b, c)-balanced CR scheme is a special case of a *bc*-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. $c \rightarrow 1$ (at the possible cost of $b \rightarrow 0$).

Definition: (b, c)-balanced CR scheme $(b, c \in (0, 1])$ A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by $x \in P$, that selects a set $I \in \mathcal{F}$, $I \subseteq R(b \cdot x)$ with $\Pr[i \in I \mid i \in R(b \cdot x)] \ge c \quad \forall i \in N.$

A (b, c)-balanced CR scheme is a special case of a *bc*-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. $c \rightarrow 1$ (at the possible cost of $b \rightarrow 0$).

Definition: (b, c)-balanced CR scheme $(b, c \in (0, 1])$ A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by $x \in P$, that selects a set $I \in \mathcal{F}$, $I \subseteq R(b \cdot x)$ with $\Pr[i \in I \mid i \in R(b \cdot x)] \ge c \quad \forall i \in N.$

A (b, c)-balanced CR scheme is a special case of a *bc*-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. $c \rightarrow 1$ (at the possible cost of $b \rightarrow 0$).

This approach is stronger in the parallel part.

• Resulting scheme is (b, c_1c_2) -balanced.

Existence of strong CR scheme

Results on CR schemes

- (b, 1-e^{-b}/b)-balanced, monotone and strict CR scheme for matroid constraint, for b ∈ (0, 1]. This scheme is optimal.
- For any fixed ε > 0: (1 − ε, 1 − ε)-balanced monot. and strict CR scheme for knapsack constraint.
- $(b, 1 \Omega(b))$ -balanced, monotone and strict CR scheme for UFP.
- (b, 1 2kb)-balanced, monotone and strict CR scheme for k-sparse PIP.

Existence of strong CR scheme

Results on CR schemes

- (b, 1-e^{-b}/b)-balanced, monotone and strict CR scheme for matroid constraint, for b ∈ (0, 1]. This scheme is optimal.
- For any fixed ε > 0: (1 − ε, 1 − ε)-balanced monot. and strict CR scheme for knapsack constraint.
- $(b, 1 \Omega(b))$ -balanced, monotone and strict CR scheme for UFP.
- (b, 1 2kb)-balanced, monotone and strict CR scheme for k-sparse PIP.

Putting the pieces together to obtain the claimed results

E.g. to optimize over k matroid constraints and a $\ell=\Omega(1)$ knapsacks, a c-balanced CR scheme can be obtaind for

$$c = b \cdot \underbrace{\left(\frac{1 - e^{-b}}{b}\right)^k}_{\text{matroids}} \cdot \underbrace{\left(1 - \epsilon\right)^\ell}_{\text{knapsacks}} \stackrel{b = 1/k}{=} \Omega(1/k).$$

 $\Rightarrow \alpha \cdot \Omega(1/k) = \Omega(1/k)$ -approx to maximize f over those constraints, where $\alpha = 0.325$ is the approximation ratio for maximizing F over P.

Outline

1 Introduction

- **2** General framework
- **3** Maximizing the multilinear extension
- **4** Rounding through contention resolution schemes
- **5** An optimal CR-scheme for matroids
- **6** Conclusions

Very short introduction to matroids I

Definition: Matroid A matroid $M = (N, \mathcal{F})$ consists of a finite ground set N and a non-empty family $\mathcal{F} \subseteq 2^N$ of subsets of N such that:

```
i) If I \in \mathcal{F} and J \subseteq I, then J \in \mathcal{F}.
```

```
ii) If I, J \in \mathcal{F} and |I| > |J|, then \exists i \in I \setminus J with J \cup \{i\} \in \mathcal{F}.
```

► The sets in *F* are called independent sets and are typically described by an independence oracle.

Maximal independent sets are called bases.

ightarrow Because of *ii*) all bases of a matroid have the same cardinality.

Example: graphic matroid

Let G = (V, E) be an undirected graph. The graphic matroid of G is defined to be M = (E, F), where F is the set of all forests of G.

Greedy algorithm finds a maximum weight independent set.

Very short introduction to matroids I

Definition: Matroid A matroid $M = (N, \mathcal{F})$ consists of a finite ground set N and a non-empty family $\mathcal{F} \subseteq 2^N$ of subsets of N such that:

```
i) If I \in \mathcal{F} and J \subseteq I, then J \in \mathcal{F}.
```

```
ii) If I, J \in \mathcal{F} and |I| > |J|, then \exists i \in I \setminus J with J \cup \{i\} \in \mathcal{F}.
```

► The sets in *F* are called independent sets and are typically described by an independence oracle.

Maximal independent sets are called bases.

 \rightarrow Because of *ii*) all bases of a matroid have the same cardinality.

Example: graphic matroid

Let G = (V, E) be an undirected graph. The graphic matroid of G is defined to be M = (E, F), where F is the set of all forests of G.

Greedy algorithm finds a maximum weight independent set.

Very short introduction to matroids I

Definition: Matroid A matroid $M = (N, \mathcal{F})$ consists of a finite ground set N and a non-empty family $\mathcal{F} \subseteq 2^N$ of subsets of N such that:

```
i) If I \in \mathcal{F} and J \subseteq I, then J \in \mathcal{F}.
```

```
ii) If I, J \in \mathcal{F} and |I| > |J|, then \exists i \in I \setminus J with J \cup \{i\} \in \mathcal{F}.
```

► The sets in *F* are called independent sets and are typically described by an independence oracle.

- Maximal independent sets are called bases.
 - \rightarrow Because of *ii*) all bases of a matroid have the same cardinality.

Example: graphic matroid

Let G = (V, E) be an undirected graph. The graphic matroid of G is defined to be M = (E, F), where F is the set of all forests of G.

Greedy algorithm finds a maximum weight independent set.

Very short introduction to matroids II

The rank function $r: 2^N \to \mathbb{Z}_+$ of a matroid $M = (N, \mathcal{F})$ is defined by:

 $r(A) = \max\{|I| \mid I \subseteq A, I \in \mathcal{F}\}$

(BTW, this function is also submodular)

We show how to obtain a monotone $(1 - e^{-1})$ -balanced CR scheme. (getting a $(b, \frac{1-e^{-b}}{b})$ -balanced CR scheme is analogous)

We show how to obtain a monotone $(1 - e^{-1})$ -balanced CR scheme. (getting a $(b, \frac{1-e^{-b}}{b})$ -balanced CR scheme is analogous)

- Let Π be the set of all monotone deterministic CR scheme $\pi: 2^N \to \mathcal{F}$.
- We create the best CR scheme being a convex combination of monotone deterministic schemes → leads to a monotone CR scheme.

We show how to obtain a monotone $(1 - e^{-1})$ -balanced CR scheme. (getting a $(b, \frac{1-e^{-b}}{b})$ -balanced CR scheme is analogous)

- Let Π be the set of all monotone deterministic CR scheme $\pi: 2^N \to \mathcal{F}$.
- We create the best CR scheme being a convex combination of monotone deterministic schemes → leads to a monotone CR scheme.

Let $q_{i,\pi} := \Pr_R[i \in \pi(R(x))].$

	max	С			
(I P1)	s.t.	$\sum_{\pi\in\Pi} q_{i,\pi}\lambda_{\pi}$	\geq	X _i C	$\forall i \in N$
([]]		$\sum_{\pi \in \Pi} \lambda_{\pi}$	=	1	
		λ_{π}	\geq	0	$\forall \pi \in \Pi$

We show how to obtain a monotone $(1 - e^{-1})$ -balanced CR scheme. (getting a $(b, \frac{1-e^{-b}}{b})$ -balanced CR scheme is analogous)

- Let Π be the set of all monotone deterministic CR scheme $\pi: 2^N \to \mathcal{F}$.
- We create the best CR scheme being a convex combination of monotone deterministic schemes → leads to a monotone CR scheme.

Let $q_{i,\pi} := \Pr_R[i \in \pi(R(x))].$

$$(\mathsf{LP1}) \begin{array}{cccc} \max & c \\ s.t. & \sum_{\pi \in \Pi} q_{i,\pi} \lambda_{\pi} & \geq & x_i c \quad \forall i \in \mathsf{N} \\ & \sum_{\pi \in \Pi} \lambda_{\pi} & = & 1 \\ \lambda_{\pi} & \geq & \mathsf{0} \quad \forall \pi \in \Pi \end{array}$$

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \mathsf{s.t.} & \sum_{i \in \mathsf{N}} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in \mathsf{N}} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

We can (approximately) separate over the dual

• Goal: find $\pi \in \Pi$ maximizing

$$\sum_{i\in N} q_{i,\pi} y_i = \sum_{i\in N} \Pr[i\in \pi(R(x))] \cdot y_i = \mathsf{E}\left[\sum_{i\in N} \mathbf{1}_{i\in \pi(R(x))} \cdot y_i\right] = \mathsf{E}\left[\sum_{i\in \pi(R(x))} y_i\right].$$

п

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \mathsf{s.t.} & \sum_{i \in \mathsf{N}} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in \mathsf{N}} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

We can (approximately) separate over the dual

• Goal: find $\pi \in \Pi$ maximizing

$$\sum_{i \in N} q_{i,\pi} y_i = \sum_{i \in N} \Pr[i \in \pi(R(x))] \cdot y_i = \mathbf{E} \left[\sum_{i \in N} \mathbf{1}_{i \in \pi(R(x))} \cdot y_i \right] = \mathbf{E} \left[\sum_{i \in \pi(R(x))} y_i \right].$$

$$\sum_{i \in \pi(R(x))} y_i \text{ has to be maximized } \forall R(x) \subseteq N.$$

п.

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \mathsf{s.t.} & \sum_{i \in \mathsf{N}} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in \mathsf{N}} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

We can (approximately) separate over the dual

• Goal: find $\pi \in \Pi$ maximizing

$$\sum_{i \in N} q_{i,\pi} y_i = \sum_{i \in N} \Pr[i \in \pi(R(x))] \cdot y_i = \mathbf{E} \left[\sum_{i \in N} \mathbf{1}_{i \in \pi(R(x))} \cdot y_i \right] = \mathbf{E} \left[\sum_{i \in \pi(R(x))} y_i \right].$$
$$\sum_{i \in \pi(R(x))} y_i \text{ has to be maximized } \forall R(x) \subseteq N.$$

π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes, including non-deterministic ones.

п

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \mathsf{s.t.} & \sum_{i \in \mathsf{N}} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in \mathsf{N}} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

We can (approximately) separate over the dual

• Goal: find $\pi \in \Pi$ maximizing

$$\sum_{i\in\mathbb{N}} q_{i,\pi} y_i = \sum_{i\in\mathbb{N}} \Pr[i\in\pi(R(x))] \cdot y_i = \mathsf{E}\left[\sum_{i\in\mathbb{N}} \mathbf{1}_{i\in\pi(R(x))} \cdot y_i\right] = \mathsf{E}\left[\sum_{i\in\pi(R(x))} y_i\right].$$

- $\sum_{i \in \pi(R(x))} y_i$ has to be maximized $\forall R(x) \subseteq N$.
- π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes, including non-deterministic ones.
- Greedy algorithms are indeed deterministic and monotone.

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu & \\ \mathsf{s.t.} & \sum_{i \in \mathsf{N}} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in \mathsf{N}} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

We can (approximately) separate over the dual

• Goal: find $\pi \in \Pi$ maximizing

$$\sum_{i\in\mathbb{N}}q_{i,\pi}y_i=\sum_{i\in\mathbb{N}}\Pr[i\in\pi(R(x))]\cdot y_i=\mathsf{E}\left[\sum_{i\in\mathbb{N}}\mathbf{1}_{i\in\pi(R(x))}\cdot y_i\right]=\mathsf{E}\left[\sum_{i\in\pi(R(x))}y_i\right].$$

- $\sum_{i \in \pi(R(x))} y_i$ has to be maximized $\forall R(x) \subseteq N$.
- π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes, including non-deterministic ones.
- Greedy algorithms are indeed deterministic and monotone.
- ⇒ The best monotone CR scheme for matroids is a convex combination of greedy CR schemes, and we can find it (approximately).

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \mathsf{s.t.} & \sum_{i \in \mathsf{N}} \mathsf{q}_{i,\pi} \mathsf{y}_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in \mathsf{N}} \mathsf{x}_i \mathsf{y}_i & = & 1 \\ & \mathsf{y}_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

We can (approximately) separate over the dual

• Goal: find $\pi \in \Pi$ maximizing

$$\sum_{i\in\mathbb{N}}q_{i,\pi}y_i=\sum_{i\in\mathbb{N}}\Pr[i\in\pi(R(x))]\cdot y_i=\mathsf{E}\left[\sum_{i\in\mathbb{N}}\mathbf{1}_{i\in\pi(R(x))}\cdot y_i\right]=\mathsf{E}\left[\sum_{i\in\pi(R(x))}y_i\right].$$

- $\sum_{i \in \pi(R(x))} y_i$ has to be maximized $\forall R(x) \subseteq N$.
- π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes, including non-deterministic ones.
- Greedy algorithms are indeed deterministic and monotone.
- ⇒ The best monotone CR scheme for matroids is a convex combination of greedy CR schemes, and we can find it (approximately).

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \text{s.t.} & \sum_{i \in N} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in N} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

Goal

- We want to show that optimal dual value is $\geq 1 e^{-1}$.

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \text{s.t.} & \sum_{i \in N} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in N} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

Goal

- We want to show that optimal dual value is $\geq 1 e^{-1}$.
- This is optimal: easy to find examples showing that ∄ (1 − e⁻¹ − ε)-balanced CR scheme. (e.g. uniform matroid of rank one with x_i = 1/n for i ∈ N)

Proof procedure

We show that for any dual-feasible $y \in [0,1]^N$, $\exists \pi \in \Pi$ with $\sum_{i \in N} q_{i,\pi} y_i \ge 1 - e^{-1}$.

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \text{s.t.} & \sum_{i \in N} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \mathsf{\Pi} \\ & \sum_{i \in N} x_i y_i & = & 1 \\ & y_i & \geq & \mathsf{0} & \forall i \in \mathsf{N} \end{array}$$

Goal

- We want to show that optimal dual value is $\geq 1 e^{-1}$.

Proof procedure

We show that for any dual-feasible $y \in [0,1]^N$, $\exists \pi \in \Pi$ with $\sum_{i \in N} q_{i,\pi} y_i \ge 1 - e^{-1}$.

Let y ∈ [0, 1]^N be dual-feasible, we choose π ∈ Π to be the greedy algorithm w.r.t. the weights y.

$$\sum_{i\in N} q_{i,\pi} y_i = \mathsf{E}\left[\sum_{i\in \pi(R(x))} y_i\right] = \mathsf{E}[r_y(R(x))],$$

where r_y is the y-weighted rank function of the underlying matroid.

$$\begin{array}{rcl} (\mathsf{DP1}) & \begin{array}{ccc} \min & \mu \\ \mathsf{s.t.} & \sum_{i \in N} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \Pi \\ & \sum_{i \in N} x_i y_i & = & 1 \\ & y_i & \geq & 0 & \forall i \in N \end{array}$$

$$\sum_{i\in N} q_{i,\pi} y_i = \mathsf{E}\left[\sum_{i\in \pi(R(x))} y_i\right] = \mathsf{E}[r_y(R(x))]$$

$$\begin{array}{ccccc} \min & \mu & \\ \text{(DP1)} & \begin{array}{cccc} \min & \mu & \\ \text{s.t.} & \sum_{i \in N} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \Pi \\ & \sum_{i \in N} x_i y_i & = & 1 & \\ & y_i & \geq & 0 & \forall i \in N \end{array}$$

$$\sum_{i\in N} q_{i,\pi} y_i = \mathsf{E}\left[\sum_{i\in \pi(R(x))} y_i\right] = \mathsf{E}[r_y(R(x))] \ge (1-e^{-1})\sum_{i\in N} x_i y_i$$

Theorem (Calinescu et al., 2007; Vondrák, 2007)

Let $r_w : 2^N \to \mathbb{R}_+$ be the weighted rank function of a matroid $M = (N, \mathcal{I})$, with weights $w : N \to \mathbb{R}_+$, and let $v \in P_M$ be a point in the matroid polytope. Then

$$\mathbf{E}[r_w(R(v))] \geq (1-e^{-1})\sum_{i\in N} v_i w_i.$$

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \text{s.t.} & \sum_{i \in N} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \Pi \\ & \sum_{i \in N} x_i y_i & = & 1 \\ & y_i & \geq & 0 & \forall i \in N \end{array}$$

$$\sum_{i \in N} q_{i,\pi} y_i = \mathsf{E} \left[\sum_{i \in \pi(R(x))} y_i \right] = \mathsf{E} [r_y(R(x))] \ge (1 - e^{-1}) \sum_{i \in N} x_i y_i = 1 - e^{-1}.$$

Theorem (Calinescu et al., 2007; Vondrák, 2007)

Let $r_w : 2^N \to \mathbb{R}_+$ be the weighted rank function of a matroid $M = (N, \mathcal{I})$, with weights $w : N \to \mathbb{R}_+$, and let $v \in P_M$ be a point in the matroid polytope. Then

$$\mathbf{E}[r_w(R(v))] \geq (1-e^{-1})\sum_{i\in N} v_i w_i.$$

$$(\mathsf{DP1}) \begin{array}{cccc} \min & \mu \\ \text{s.t.} & \sum_{i \in N} q_{i,\pi} y_i & \leq & \mu & \forall \pi \in \Pi \\ & \sum_{i \in N} x_i y_i & = & 1 \\ & y_i & \geq & 0 & \forall i \in N \end{array}$$

$$\sum_{i \in N} q_{i,\pi} y_i = \mathsf{E} \left[\sum_{i \in \pi(R(x))} y_i \right] = \mathsf{E} [r_y(R(x))] \ge (1 - e^{-1}) \sum_{i \in N} x_i y_i = 1 - e^{-1}.$$

Theorem (Calinescu et al., 2007; Vondrák, 2007)

Let $r_w : 2^N \to \mathbb{R}_+$ be the weighted rank function of a matroid $M = (N, \mathcal{I})$, with weights $w : N \to \mathbb{R}_+$, and let $v \in P_M$ be a point in the matroid polytope. Then

$$\mathbf{E}[r_w(R(v))] \geq (1-e^{-1})\sum_{i\in N} v_i w_i.$$

- Hence, the optimal dual value is at least $1 e^{-1}$.
- ▶ $\Rightarrow \exists$ a $(1 e^{-1})$ -balanced and monotone CR-scheme for matroids.

Outline

1 Introduction

- **2** General framework
- **3** Maximizing the multilinear extension
- **4** Rounding through contention resolution schemes
- **5** An optimal CR-scheme for matroids

6 Conclusions

Conclusions

- The multilinear extension can be maximized up to a constant factor on any down-closed and solvable polytope.
- Contention resolution schemes provide a modular way for rounding a fractional point in the context of SFM.
- ▶ What is the best possible approximation ratio for maximizing *F* over *P*?
- Convex combinations of monotone deterministic CR schemes are in general not as powerful as randomized CR schemes. How much do we lose?
- What about other extensions than the multilinear one?
- Derandomization?

Thank you!
References I

- Bansal, N., Korula, N., Nagarajan, V., and Srinivasan, A. (2010). On k-column sparse packing programs. In Eisenbrand, F. and Shepherd, F., editors, *Integer Programming and Combinatorial Optimization*, volume 6080 of *Lecture Notes in Computer Science*, pages 369–382. Springer Berlin / Heidelberg. 10.1007/978-3-642-13036-6_28.
- Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. (2007). Maximizing a submodular set function subject to a matroid constraint. In *IPCO '07: Proceedings of the 12th international conference on Integer Programming and Combinatorial Optimization*, pages 182–196, Berlin, Heidelberg. Springer-Verlag.
- Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. (2011). Maximizing a monotone submodular function subject to a matroid constraint. To appear in SIAM Journal on Computing.
- Feige, U., Mirrokni, V. S., and Vondrák, J. (2007). Maximizing non-monotone submodular functions. In *Proceedings of the 48th Annual IEEE Symposium* on Foundations of Computer Science, pages 461–471, Washington, DC, USA. IEEE Computer Society.

References II

- Kulik, A., Shachnai, H., and Tamir, T. (2011). Approximations for monotone and non-monotone submodular maximization with knapsack constraints. http://arxiv.org/abs/1101.2940/v1.
- Lee, J., Sviridenko, M., and Vondrák, J. (2009). Submodular maximization over multiple matroids via generalized exchange properties. In APPROX '09 / RANDOM '09: Proceedings of the 12th International Workshop and 13th International Workshop on Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, pages 244–257, Berlin, Heidelberg. Springer-Verlag.
- Oveis Gharan, S. and Vondrák, J. (2011). Submodular function maximization by simulated annealing. In SODA '11: Proceedings of the Twenty-First Annual ACM -SIAM Symposium on Discrete Algorithms, pages 1098–1116.
- Vondrák, J. (2007). *Submodularity in Combinatorial Optimization*. PhD thesis, Charles University.