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@ Introduction



Submodular functions
> Let N be a finite ground set, n := |N]|.

Definition (submodular function)
A set function f : 2V — R is submodular if it has diminishing returns:

f(A+i)—f(A)>f(B+i)—f(B VACBCN,Vie N\ B
(A+i)—f(A)=f(B+i)—f(B) CBCN,VieN\
=AU{i}

Equivalent definition: f(A)+ f(B) > f(AUB)+f(ANB)  VA,BCN.

— Submodularity is a natural property of utility functions.

> f is monotone < f(A) < f(B) VACB.

/26



Examples of subm. funct. beyond utility functions

Example I: coverage function
Let U be a finite ground set and W; C U for

i€N.
Uw
i€eA

fF(A) = VAC N
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Examples of subm. funct. beyond utility functions

Example I: coverage function
Let U be a finite ground set and W; C U for

i€N.
Uw
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fF(A) = VAC N

Example Il: cut function
Let G = (V, E) be a graph with edge weights
w:E—>R;.

F(U) = w(5(U)) = w(E(U, V\ U)) YU C V

’

Other examples
» Entropy function H : 2V — R, of random variables {X;}icn:
H(A) :=H{Xi|i€ A}) VACN.
» Reduction of connection costs in facility location problems.

> ...




Optimizing submodular functions

Access to f by value oracle: can query f(A) for AC N.
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Optimizing submodular functions

Access to f by value oracle: can query f(A) for AC N.

Minimization vs. maximization

> Unconstrained minimization of submodular functions can be done efficiently.

» Unconstrained maximization of submodular functions is hard:

e Currently best approximation ratio: 0.41. (Oveis Gharan and Vondrak, 2011)
e No > 0.5-approx without exponentially many calls to value oracle.
(Feige et al., 2007)
e Remains hard in many settings outside the value oracle model
(Max-CuT, MAX-K-COVER, ...).

> O(1)-approximations often achievable under additional constraints.
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Optimizing submodular functions

Access to f by value oracle: can query f(A) for AC N.

Minimization vs. maximization

> Unconstrained minimization of submodular functions can be done efficiently.

» Unconstrained maximization of submodular functions is hard:

e Currently best approximation ratio: 0.41. (Oveis Gharan and Vondrak, 2011)
e No > 0.5-approx without exponentially many calls to value oracle.
(Feige et al., 2007)
e Remains hard in many settings outside the value oracle model
(Max-CuT, MAX-K-COVER, ...).

> O(1)-approximations often achievable under additional constraints.

Under which constraints is it possible to
approximately maximize submodular functions?



Previous results on SFM (subm. funct. max.)

> Assume f : 2V — R, (otherwise: no hope for good approximations).

Approaches for SFM are based either on
a) combinatorial local search procedures (replacing elements), or
b) relaxation and rounding techniques.

H Constraint type H Linear max. [ Monotone subm. max. [ Subm. max. H
O(1) knapsacks 1—¢ 1-1/e—¢! 0.25—¢1
1 matroid 1 1-1/e? 0.3253
k = O(1) matroids || 1/(k—1+¢)* 1/(k+e Uk+1+ 546 *

'Kulik et al. (2011)

2Calinescu et al. (2011)

30veis Gharan and Vondrak (2011)
*Lee et al. (2009)
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> Assume f : 2V — R, (otherwise: no hope for good approximations).

Approaches for SFM are based either on
a) combinatorial local search procedures (replacing elements), or
b) relaxation and rounding techniques.

H Constraint type H Linear max. [ Monotone subm. max. [ Subm. max. H
O(1) knapsacks 1—¢ 1-1/e—¢! 0.25—¢1
1 matroid 1 1-1/e? 0.3253
k = O(1) matroids || 1/(k—1+¢)* 1/(k+e Uk+1+ 546 *

Issue with previous approaches
Typically heavily tailored to the underlying constraints.
— e.g., despite progress on knapsack and matroid constraints, not much was
known about a combination of those constraints.

Is there some more versatile framework?

'Kulik et al. (2011)

2Calinescu et al. (2011)

30veis Gharan and Vondrak (2011)
*Lee et al. (2009)



Our results

We introduce a rather general relaxation-and-rounding framework that allows for
combining constraints (at the price of a slightly weaker approximation quality).

(Some) new results due to our framework

1 Constraint type [| Linear max. [ Monot. subm. max. | Subm. max. ]
O(1) knapsacks 1—e¢ 1—1/e—¢€ 002'32_5
k = O(1) matroids /(k—1+¢) | 1/(k+e)for k>2 | 1/(k+1+ =5 +¢)
k matr. & ¢ = O(1) knaps. 0.6/k 0.38/k 0.19/k
k-matchoid & ¢-sparse PIP || Q(1/(k + 7)) Q(1/(k+2)) Q(1/(k+ 1))
UFP on paths and trees Q(1) Q(1) Q(1)

® new results
e previous results
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Our results

We introduce a rather general relaxation-and-rounding framework that allows for
combining constraints (at the price of a slightly weaker approximation quality).

(Some) new results due to our framework

1 Constraint type [| Linear max. [ Monot. subm. max. | Subm. max. ]
O(1) knapsacks 1—e¢ 1—1/e—¢€ 002'32_5
k = O(1) matroids /(k—1+¢) | 1/(k+e)for k>2 | 1/(k+1+ =5 +¢)
k matr. & ¢ = O(1) knaps. 0.6/k 0.38/k 0.19/k
k-matchoid & ¢-sparse PIP || Q(1/(k + 7)) Q(1/(k+2)) Q(1/(k+ 1))
UFP on paths and trees Q(1) Q(1) Q(1)

® new results
e previous results

Remark

The constraints F C 2V we consider are all closed under inclusion, i.e.,
Aec F,.BCA= BeF.
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General framework

S sisen

1. Create relaxed problem

i) Relax constraints:
F C 2N ~ polytope P C [0, 1]V

ii) Extend submodular function:
f~F:[0,1]N =R,
(F(1s) =f(S)VSCN).

2. Maximize F over P ~ x € P

3. Rounding: x ~ I(x) € F
i) x~ R(x) C N with
Pr[i € R(x)] = x;
ii) R(x)~ I(x) € F, with
1(x) C R(x) and
E[f(/(x))] = cF(x)
(this randomized step depends on x)

8
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Shooting for a good extension

> Multilinear extension: F(x) := Z f(S)Hx,- H (1—x) = E[f(R(x))], where

SCN i€S  ieN\S

R(x) C N: random set with Pr[i € R(x)] = x; independently for i € N.

e Easy to approximately evaluate through Monte-Carlo sampling.
e Behaves nicely w.r.t. indep. rounding (would lead to constraint violations).
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Shooting for a good extension

> Multilinear extension: F(x) := Z f(S)Hx,- H (1—x) = E[f(R(x))], where

SCN i€S  ieN\S

R(x) C N: random set with Pr[i € R(x)] = x; independently for i € N.

e Easy to approximately evaluate through Monte-Carlo sampling.
e Behaves nicely w.r.t. indep. rounding (would lead to constraint violations).

> Lovasz extension: f*(x) := min { Z asf(S)

SCN

Z Ozs:Xi,Zas:LasZO}

SCN,i€S SCN
e Convex

e Easy to evaluate
e Hard to maximize

» Concave closure: f*(x) := max{ Z asf(S)

SCN

Z ozgzx,-,Zas:l,aSZO}

SCN,i€S SCN

e Concave
e Hard to evaluate
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© Maximizing the multilinear extension



Maximizing F over solvable down-closed polytopes P

Definitions
> P is down-closed (or down-monotone) if x € P,y < x =y € P.
> P is solvable if linear functions can be optimizing efficiently over P.

Our main results here
> We can find y € P with F(y) > 0.25- max{F(x) | x € P}.
» We can find y € P with F(y) > 0.325-max{F(x) | x € PN {0,1}"}.

> Next slides: very short sketch of the 0.25-approx due to its simplicity.

> To get some intuition let's first consider a related 1/3-approx for
unconstrained SFM (which is a variation of an algo of Feige et al. (2007)).
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Getting some intuition
A related 1/3-approx for unconstrained SFM
%—approx for unconstrained SFM
1. Find a local opt X C N: f(XL£i)<f(X) VieNl.
2. Find a local opt Y C N\ X: f(YL£i)<f(Y) VieN\X.
3. Return the better of X and Y.

Proof.
> Let Z be a global opt.

» X local opt:

o f(X)>f(XU2Z),
o f(X)>f(XN2Z).

» Y local opt:
e F(Y)>Ff(YU(Z\X)).

X N

20(X)+F(Y)> F(XNZ)+F(XUZ)+F(YU(Z\X))>F(2)
>F(Z\X) O
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Sketch of the 0.25-approx for down-closed P

0.25-approx
1. Find an (approximate) local opt x of F over P, i.e.,
VF(x)-(v—x)<0 VveP.
2. Find an (approximate) local opt y of F over Q ={v e P|v <1-—x},
VF(y) - (v—y)<0 VYveQ.

3. Return the better of x and y.
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O Rounding through contention resolution schemes



Contention resolution (CR) schemes

> F(x) = E[f(R(x))] = independent rounding preserves value in ex-
pectation but is likely to violate constraints.
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Contention resolution (CR) schemes

> F(x) = E[f(R(x))] = independent rounding preserves value in ex-
pectation but is likely to violate constraints.
Plan: > accept lower value for expectation to obtain feasibility,

» maintain “sufficient” independence in rounding process to get
good expectation.
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Contention resolution (CR) schemes

> F(x) = E[f(R(x))] = independent rounding preserves value in ex-
pectation but is likely to violate constraints.
Plan: > accept lower value for expectation to obtain feasibility,

» maintain “sufficient” independence in rounding process to get
good expectation.

Definition: balanced CR scheme
A c-balanced CR scheme for P is a (random) procedure parametrized by x € P,

that selects a set | € F, | C R(x) with
Prliell>c-x;, < Prliel]ieR(x)]>c vVieN.

Furthermore, the scheme is called

» monotone if
Prli € I | R(x) = Ry] > Pr[i € I | R(x) = R3] Vie Ry CR, CN,

» and strict if

Prliel|ie R(x)]=c VieN.
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Rounding guarantees

Theorem (follows from Bansal et al. (2010))

Let x € P, and let /(x) be the output of a monotone and strict c-balanced CR
scheme. Then
E[f(/(x))] > ¢ F(x).
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Rounding guarantees

Theorem (follows from Bansal et al. (2010))

Let x € P, and let /(x) be the output of a monotone and strict c-balanced CR
scheme. Then

E[F(1(:))] = ¢ - F(x).

Remarks

» Strictness is only needed for non-monotone f, and can be avoided by a
simple post-processing of /.

» The rounding procedure is oblivious to f.
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Proof of rounding guarantee (1)
> We number the elements N = [n] :== {1,...,n}.
> For AC N,i €N, let fa(i) = F(A+ i) — F(A).

E[f(N] = f(0) + ZE[f/m[] —f(In[i—1])].

We want to show: \ E[f(/ N[i]) — F(I N [i — 1])] > Pr[i € R] - ¢ - E[fany_1(i)] \

This then implies

F(0) + D ELF(IN L) — (N - 1) > e

F(0) + Z Pr[i € R]E[me[il](i)]]

i=1

F0)+ Y E[f(RN[i]) — fF(RN[i— 1])]]

=c- F(x). )

15/26



Proof of rounding guarantee (I1)
To show: \ E[f(/ N [1]) — F(I N [i —1])] > Prli € R] - ¢ - E[frnpi_1y(7)] \

E[f(I N [i]) — £ N0 [ = 1])] = E[Lies fingi-y (7]
> E[lie/frapi—1(1)]
> ER[E[Lic/frri— (1) | R]]
= ER[E/[1ic/ | R] frAfi—1 (/)]
> Pr[i € R]-E[Pr[i € I | R]fra[i—1)(i) | i € R]
On the product space associated with distribution of R conditioned on i € R:

> Pr[i € I | R] is non-decreasing < monotonicity of CR scheme,
> frai—1)() is non-decreasing < submodularity of f.

= we can apply FKG.
Er[Prli € I | Rlfzni_1(i) i € R]
FKG ) ) N
> Eg[Prlic I |R]|i€ R]-Eg[frji—y(i) | i € R]
=Prlicl]i€ R]-E[fraji—y(/)]
strictness

= ¢ E[frrji—y»]-

16
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Combining CR schemes
Often, F is composed of simpler constraints: F = FiNF, = P=PiNP,.

Goal: combine monotone (and strict) ci-balanced CR scheme for P; with monotone
(and strict) c;-balanced CR scheme for P, to obtain one for P.
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(and strict) c;-balanced CR scheme for P, to obtain one for P.

A simple approach:
e L

0>
indep.
rounding

@
M

2

1

C R(x)
e F

IZIIHIQ{

C R(z)
€F

.
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€ F
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Often, F is composed of simpler constraints: F = FiNF, = P=PiNP,.

Goal: combine monotone (and strict) ci-balanced CR scheme for P; with monotone
(and strict) c;-balanced CR scheme for P, to obtain one for P.

A simple approach:

sme 1 I C R(x)
0%60\\8 ! {G Fi
— _indep. ] _ C R(x)
rounding R(z) \ I=nLnl {e F
& C R(z)
S(?jleme 5 Iy {g]__z

» Monotonicity is preserved.
> Resulting CR scheme is ¢; c;-balanced:

FKG
Prlicl|ieR(x)] =E[LiesLicy | i € R(x)] > E[licy, | i € R(x)] E[lics, | i € R(x)].
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Combining CR schemes
Often, F is composed of simpler constraints: F = FiNF, = P=PiNP,.

Goal: combine monotone (and strict) ci-balanced CR scheme for P; with monotone
(and strict) c;-balanced CR scheme for P, to obtain one for P.

A simple approach:

smel |7 C R(x)
0%60\\8 ! {G Fi
— _indep. ] _ C R(x)
rounding R(z) I'=hLnNI {E F
,Ielne 2 2 c ]_-2

» Monotonicity is preserved.
> Resulting CR scheme is ¢; c;-balanced:

FKG
Prlicl|ieR(x)] =E[LiesLicy | i € R(x)] > E[licy, | i € R(x)] E[lics, | i € R(x)].

=q =c

» Combining k schemes being c-balanced — c-balanced scheme.
» Our goal: obtain Q(1/k)-balanced CR scheme.
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Combining CR schemes (11)

Definition: (b, c)-balanced CR scheme (b, c € (0, 1])

A (b, c¢)-balanced CR scheme for P is a (random) procedure parametrized by x € P,
that selects a set | € F, | C R(b - x) with

Prliel|ieR(b-x)]>c VieN.
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Combining CR schemes (11)

Definition: (b, c)-balanced CR scheme (b, c € (0, 1])
A (b, c¢)-balanced CR scheme for P is a (random) procedure parametrized by x € P,
that selects a set | € F, | C R(b - x) with

Prliel|ieR(b-x)]>c Vi e N.

> A (b, c)-balanced CR scheme is a special case of a bc-balanced CR scheme.

Goal: Create families of monotone (b, c¢)-balanced CR schemes s.t. ¢ — 1 (at the
possible cost of b — 0).

The new plan:

Cﬁ‘s&e ' {E Fi
— indep. _ C R(bz)
rounding R(bx) I=hnl {e F
&2 C R(bx)
S CR
heme 5|12 { c 7
» This approach is stronger in the parallel part.
> Resulting scheme is (b, c1¢;)-balanced. J
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Existence of strong CR scheme

Results on CR schemes

> (b, 1’Zfb)-balanced, monotone and strict CR scheme for matroid constraint, for
b € (0,1]. This scheme is optimal.

> For any fixed e > 0: (1 — ¢, 1 — €)-balanced monot. and strict CR scheme for
knapsack constraint.

> (b,1 — Q(b))-balanced, monotone and strict CR scheme for UFP.
> (b,1 — 2kb)-balanced, monotone and strict CR scheme for k-sparse PIP.
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Existence of strong CR scheme

Results on CR schemes

> (b, %)-balanced, monotone and strict CR scheme for matroid constraint, for
b € (0,1]. This scheme is optimal.

> For any fixed e > 0: (1 — ¢, 1 — €)-balanced monot. and strict CR scheme for
knapsack constraint.

> (b,1— Q(b))-balanced, monotone and strict CR scheme for UFP.
> (b,1 — 2kb)-balanced, monotone and strict CR scheme for k-sparse PIP.

Putting the pieces together to obtain the claimed results

E.g. to optimize over k matroid constraints and a £ = (1) knapsacks, a c-balanced
CR scheme can be obtaind for

c=b- <1 _be_b>k (L—/e_)i " aqa/k).
A

knapsacks

matroids

= a- Q1/k) = Q(1/k)-approx to maximize f over those constraints, where
a = 0.325 is the approximation ratio for maximizing F over P.
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@ An optimal CR-scheme for matroids



Very short introduction to matroids |

Definition: Matroid

A matroid M = (N, F) consists of a finite ground set N and a non-empty family
F C 2N of subsets of N such that:

i) If € Fand JC |/, then J € F.
i) If [,J € F and |l| > |J|, then 3i € I'\ J with JU{i} € F.

> The sets in F are called independent sets and are typically described by an
independence oracle.

» Maximal independent sets are called bases.
— Because of ii) all bases of a matroid have the same cardinality.
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Definition: Matroid
A matroid M = (N, F) consists of a finite ground set N and a non-empty family
F C 2N of subsets of N such that:
i) If € Fand JC |/, then J € F.
i) If [,J € F and |l| > |J|, then 3i € I'\ J with JU{i} € F.

> The sets in F are called independent sets and are typically described by an
independence oracle.

» Maximal independent sets are called bases.
— Because of ii) all bases of a matroid have the same cardinality.

Example: graphic matroid

Let G = (V, E) be an undirected graph. The graphic matroid of G is defined to
be M = (E,F), where F is the set of all forests of G.

> Greedy algorithm finds a maximum weight independent set.
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Very short introduction to matroids Il
The rank function r: 2N — Z, of a matroid M = (N, F) is defined by:
r(Ay=max{|l| || CA,Il e F}

(BTW, this function is also submodular)
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An optimal CR scheme for matroids (1)

We show how to obtain a monotone (1 — e™!)-balanced CR scheme. (getting a

(b, 1’ffb)—balanced CR scheme is analogous)
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(b, 1’ffb)—balanced CR scheme is analogous)

> Let I be the set of all monotone deterministic CR scheme 7 : 2" — F.

» We create the best CR scheme being a convex combination of monotone
deterministic schemes — leads to a monotone CR scheme.

Let gi,» := Prr[i € 7(R(x))].

max c
(LP1) sit. D enGindc > xic VieN
ZTFEH A” = 1
=~ > 0 Vr e
min m
(DP].) s.t. ZIEN gi-yi < p Vmel
dienxiyi = 1
yi =2 0 VieN
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An optimal CR scheme for matroids (Il)

min n
(DP1) s.t. Zie,\,q,-ﬂr'y,: E /f Vo en
DienXiyi =
yi > 0 VieN

We can (approximately) separate over the dual
» Goal: find 7 € Il maximizing

D dinyi= Y Prlien(R(x))] -y =E {Z Liex(R() -y,-:| = [ > y’] :

ieN ieN ieN iem(R(x))
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We can (approximately) separate over the dual
» Goal: find 7 € Il maximizing

D Giayi=» Prien(R(x))-yi=E

Z Licr(r(x) '.yl':| =E Z Yi

€N i€N ieN iem(R(x))
> Z yi has to be maximized VR(x) C N.
ien(R(x))

» 7 =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes,
including non-deterministic ones.
> Greedy algorithms are indeed deterministic and monotone.

= The best monotone CR scheme for matroids is a convex combination of greedy
CR schemes, and we can find it (approximately).

How good is it?
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An optimal CR scheme for matroids (I1)

min n
s.t. ien Qinyi < vrell
I A
leN Iyl -
yi > 0 VieN

Goal
> We want to show that optimal dual value is > 1 — e *.
> This is optimal: easy to find examples showing that A (1 — e™* — ¢)-balanced
CR scheme. (e.g. uniform matroid of rank one with x; = 1/n for i € N)
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An optimal CR scheme for matroids (I1)

min n
(DP1) s.t. Zie,\,q,-ﬂr'y,: E /f Vo en
DienXiyi =
yi > 0 VieN

Goal
> We want to show that optimal dual value is > 1 — e *.
> This is optimal: easy to find examples showing that A (1 — e™* — ¢)-balanced
CR scheme. (e.g. uniform matroid of rank one with x; = 1/n for i € N)

Proof procedure
We show that for any dual-feasible y € [0,1]", 37 € M with YienQinyi > 1 — et

> Let y € [0,1]" be dual-feasible, we choose 7 € I to be the greedy algorithm
w.r.t. the weights y.

> Gy = E[ > y,] = E[r,(R(X))],

ieN ien(R(x))

where r, is the y-weighted rank function of the underlying matroid.
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An optimal CR scheme for matroids (1V)

min m
s.t. i qi,xYi < Vr el
(DP1) > Xen @ =k
ienXiYi =
yi > 0 VieN

> iy = E{ > y;] = E[r,(R(x))]

ieN ien(R(x))
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An optimal CR scheme for matroids (1V)

min m
s.t. ien Qi Yi < Vr el
(DP1) > Xen @ =k
ienXiYi =
yi > 0 VieN

> iy = E{ > y;] =E[R(RCN = (1—e ") xy

ieN iem(R(x)) ieN

Theorem (Calinescu et al., 2007; Vondrak, 2007)

Let r, : 2¥ — R, be the weighted rank function of a matroid M = (N, Z), with
weights w : N — R, and let v € Py be a point in the matroid polytope. Then

E[rn(R(V)]>(1—eY) Z Viw;.

ieN
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An optimal CR scheme for matroids (1V)

min m
s.t. i qi,xYi < Vr el
(DP1) > Xen @ =k
ienXiYi =
yi > 0 VieN

ieN iem(R(x)) ieN

Theorem (Calinescu et al., 2007; Vondrak, 2007)

Let r, : 2¥ — Ry be the weighted rank function of a matroid M = (N, Z), with
weights w : N — R, and let v € Py be a point in the matroid polytope. Then

Elr(RW)] = (1 - e )Y viws

ieN

Zq;,ﬂyi—E{ Z _)/i:| =E[rn(R(X))] > (1—e" Zx,y,flfe L

» Hence, the optimal dual value is at least 1 — e~ 1.

» = Ja (1 - e !)-balanced and monotone CR-scheme for matroids.
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@ Conclusions



Conclusions

» The multilinear extension can be maximized up to a constant factor on any
down-closed and solvable polytope.

» Contention resolution schemes provide a modular way for rounding a
fractional point in the context of SFM.

» What is the best possible approximation ratio for maximizing F over P?

> Convex combinations of monotone deterministic CR schemes are in general
not as powerful as randomized CR schemes. How much do we lose?

» What about other extensions than the multilinear one?

» Derandomization?
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Thank you!
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