
Submodular Function Maximization via the
Multilinear Relaxation and Contention

Resolution Schemes

Rico Zenklusen

MIT

Joint work with Chandra Chekuri and Jan Vondrák

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

2 / 26

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

Submodular functions
I Let N be a finite ground set, n := |N|.

Definition (submodular function)

A set function f : 2N → R is submodular if it has diminishing returns:

f (A + i︸ ︷︷ ︸
:=A∪{i}

)− f (A) ≥ f (B + i)− f (B) ∀A ⊆ B ⊆ N,∀i ∈ N \ B

Equivalent definition: f (A) + f (B) ≥ f (A ∪ B) + f (A ∩ B) ∀A,B ⊆ N.

−→ Submodularity is a natural property of utility functions.

I f is monotone ⇔ f (A) ≤ f (B) ∀A ⊆ B.

3 / 26

Examples of subm. funct. beyond utility functions

Example I: coverage function

Let U be a finite ground set and Wi ⊆ U for
i ∈ N.

f (A) =

∣∣∣∣ ⋃
i∈A

Wi

∣∣∣∣ ∀A ⊆ N

Example II: cut function

Let G = (V ,E) be a graph with edge weights
w : E → R+.

f (U) = w(δ(U)) = w(E(U,V \ U)) ∀U ⊆ V

Other examples

I Entropy function H : 2N → R+ of random variables {Xi}i∈N :

H(A) := H({Xi | i ∈ A}) ∀A ⊆ N.

I Reduction of connection costs in facility location problems.

I . . .

4 / 26

Examples of subm. funct. beyond utility functions

Example I: coverage function

Let U be a finite ground set and Wi ⊆ U for
i ∈ N.

f (A) =

∣∣∣∣ ⋃
i∈A

Wi

∣∣∣∣ ∀A ⊆ N

Example II: cut function

Let G = (V ,E) be a graph with edge weights
w : E → R+.

f (U) = w(δ(U)) = w(E(U,V \ U)) ∀U ⊆ V

Other examples

I Entropy function H : 2N → R+ of random variables {Xi}i∈N :

H(A) := H({Xi | i ∈ A}) ∀A ⊆ N.

I Reduction of connection costs in facility location problems.

I . . .

4 / 26

Examples of subm. funct. beyond utility functions

Example I: coverage function

Let U be a finite ground set and Wi ⊆ U for
i ∈ N.

f (A) =

∣∣∣∣ ⋃
i∈A

Wi

∣∣∣∣ ∀A ⊆ N

Example II: cut function

Let G = (V ,E) be a graph with edge weights
w : E → R+.

f (U) = w(δ(U)) = w(E(U,V \ U)) ∀U ⊆ V

Other examples

I Entropy function H : 2N → R+ of random variables {Xi}i∈N :

H(A) := H({Xi | i ∈ A}) ∀A ⊆ N.

I Reduction of connection costs in facility location problems.

I . . .

4 / 26

Optimizing submodular functions
Access to f by value oracle: can query f (A) for A ⊆ N.

Minimization vs. maximization

I Unconstrained minimization of submodular functions can be done efficiently.

I Unconstrained maximization of submodular functions is hard:

• Currently best approximation ratio: 0.41. (Oveis Gharan and Vondrák, 2011)

• No > 0.5-approx without exponentially many calls to value oracle.
(Feige et al., 2007)

• Remains hard in many settings outside the value oracle model
(Max-Cut, Max-k-Cover, . . .).

I Θ(1)-approximations often achievable under additional constraints.

Under which constraints is it possible to
approximately maximize submodular functions?

5 / 26

Optimizing submodular functions
Access to f by value oracle: can query f (A) for A ⊆ N.

Minimization vs. maximization

I Unconstrained minimization of submodular functions can be done efficiently.

I Unconstrained maximization of submodular functions is hard:

• Currently best approximation ratio: 0.41. (Oveis Gharan and Vondrák, 2011)

• No > 0.5-approx without exponentially many calls to value oracle.
(Feige et al., 2007)

• Remains hard in many settings outside the value oracle model
(Max-Cut, Max-k-Cover, . . .).

I Θ(1)-approximations often achievable under additional constraints.

Under which constraints is it possible to
approximately maximize submodular functions?

5 / 26

Optimizing submodular functions
Access to f by value oracle: can query f (A) for A ⊆ N.

Minimization vs. maximization

I Unconstrained minimization of submodular functions can be done efficiently.

I Unconstrained maximization of submodular functions is hard:

• Currently best approximation ratio: 0.41. (Oveis Gharan and Vondrák, 2011)

• No > 0.5-approx without exponentially many calls to value oracle.
(Feige et al., 2007)

• Remains hard in many settings outside the value oracle model
(Max-Cut, Max-k-Cover, . . .).

I Θ(1)-approximations often achievable under additional constraints.

Under which constraints is it possible to
approximately maximize submodular functions?

5 / 26

Previous results on SFM (subm. funct. max.)
I Assume f : 2N → R+ (otherwise: no hope for good approximations).

Approaches for SFM are based either on
a) combinatorial local search procedures (replacing elements), or
b) relaxation and rounding techniques.

Constraint type Linear max. Monotone subm. max. Subm. max.

O(1) knapsacks 1 − ε 1 − 1/e − ε 1 0.25 − ε 1

1 matroid 1 1 − 1/e 2 0.325 3

k = O(1) matroids 1/(k − 1 + ε) 4 1/(k + ε) 4 1/(k + 1 + 1
k−1

+ ε) 4

Issue with previous approaches

Typically heavily tailored to the underlying constraints.
→ e.g., despite progress on knapsack and matroid constraints, not much was

known about a combination of those constraints.

Is there some more versatile framework?

1Kulik et al. (2011)
2Calinescu et al. (2011)
3Oveis Gharan and Vondrák (2011)
4Lee et al. (2009)

6 / 26

Previous results on SFM (subm. funct. max.)
I Assume f : 2N → R+ (otherwise: no hope for good approximations).

Approaches for SFM are based either on
a) combinatorial local search procedures (replacing elements), or
b) relaxation and rounding techniques.

Constraint type Linear max. Monotone subm. max. Subm. max.

O(1) knapsacks 1 − ε 1 − 1/e − ε 1 0.25 − ε 1

1 matroid 1 1 − 1/e 2 0.325 3

k = O(1) matroids 1/(k − 1 + ε) 4 1/(k + ε) 4 1/(k + 1 + 1
k−1

+ ε) 4

Issue with previous approaches

Typically heavily tailored to the underlying constraints.
→ e.g., despite progress on knapsack and matroid constraints, not much was

known about a combination of those constraints.

Is there some more versatile framework?

1Kulik et al. (2011)
2Calinescu et al. (2011)
3Oveis Gharan and Vondrák (2011)
4Lee et al. (2009)

6 / 26

Previous results on SFM (subm. funct. max.)
I Assume f : 2N → R+ (otherwise: no hope for good approximations).

Approaches for SFM are based either on
a) combinatorial local search procedures (replacing elements), or
b) relaxation and rounding techniques.

Constraint type Linear max. Monotone subm. max. Subm. max.

O(1) knapsacks 1 − ε 1 − 1/e − ε 1 0.25 − ε 1

1 matroid 1 1 − 1/e 2 0.325 3

k = O(1) matroids 1/(k − 1 + ε) 4 1/(k + ε) 4 1/(k + 1 + 1
k−1

+ ε) 4

Issue with previous approaches

Typically heavily tailored to the underlying constraints.
→ e.g., despite progress on knapsack and matroid constraints, not much was

known about a combination of those constraints.

Is there some more versatile framework?

1Kulik et al. (2011)
2Calinescu et al. (2011)
3Oveis Gharan and Vondrák (2011)
4Lee et al. (2009)

6 / 26

Our results

We introduce a rather general relaxation-and-rounding framework that allows for
combining constraints (at the price of a slightly weaker approximation quality).

(Some) new results due to our framework

Constraint type Linear max. Monot. subm. max. Subm. max.

O(1) knapsacks 1 − ε 1 − 1/e − ε
0.325

0.25− ε

k = O(1) matroids 1/(k − 1 + ε) 1/(k + ε) for k ≥ 2 1/(k + 1 + 1
k−1

+ ε)

k matr. & ` = O(1) knaps. 0.6/k 0.38/k 0.19/k
k-matchoid & `-sparse PIP Ω(1/(k + `)) Ω(1/(k + `)) Ω(1/(k + `))

UFP on paths and trees Ω(1) Ω(1) Ω(1)

• new results

• previous results

Remark
The constraints F ⊆ 2N we consider are all closed under inclusion, i.e.,

A ∈ F ,B ⊆ A⇒ B ∈ F .

7 / 26

Our results

We introduce a rather general relaxation-and-rounding framework that allows for
combining constraints (at the price of a slightly weaker approximation quality).

(Some) new results due to our framework

Constraint type Linear max. Monot. subm. max. Subm. max.

O(1) knapsacks 1 − ε 1 − 1/e − ε
0.325

0.25− ε

k = O(1) matroids 1/(k − 1 + ε) 1/(k + ε) for k ≥ 2 1/(k + 1 + 1
k−1

+ ε)

k matr. & ` = O(1) knaps. 0.6/k 0.38/k 0.19/k
k-matchoid & `-sparse PIP Ω(1/(k + `)) Ω(1/(k + `)) Ω(1/(k + `))

UFP on paths and trees Ω(1) Ω(1) Ω(1)

• new results

• previous results

Remark
The constraints F ⊆ 2N we consider are all closed under inclusion, i.e.,

A ∈ F ,B ⊆ A⇒ B ∈ F .

7 / 26

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

General framework

1. Create relaxed problem

i) Relax constraints:
F ⊆ 2N polytope P ⊆ [0, 1]N

ii) Extend submodular function:
f F : [0, 1]N → R+

(F (1S) = f (S) ∀S ⊆ N).

2. Maximize F over P x ∈ P

3. Rounding: x I (x) ∈ F
i) x R(x) ⊆ N with

Pr[i ∈ R(x)] = xi

ii) R(x) I (x) ∈ F , with
I (x) ⊆ R(x) and

E[f (I (x))] ≥ cF (x)

(this randomized step depends on x)

8 / 26

General framework

1. Create relaxed problem

i) Relax constraints:
F ⊆ 2N polytope P ⊆ [0, 1]N

ii) Extend submodular function:
f F : [0, 1]N → R+

(F (1S) = f (S) ∀S ⊆ N).

2. Maximize F over P x ∈ P

3. Rounding: x I (x) ∈ F
i) x R(x) ⊆ N with

Pr[i ∈ R(x)] = xi

ii) R(x) I (x) ∈ F , with
I (x) ⊆ R(x) and

E[f (I (x))] ≥ cF (x)

(this randomized step depends on x)

8 / 26

General framework

1. Create relaxed problem

i) Relax constraints:
F ⊆ 2N polytope P ⊆ [0, 1]N

ii) Extend submodular function:
f F : [0, 1]N → R+

(F (1S) = f (S) ∀S ⊆ N).

2. Maximize F over P x ∈ P

3. Rounding: x I (x) ∈ F
i) x R(x) ⊆ N with

Pr[i ∈ R(x)] = xi

ii) R(x) I (x) ∈ F , with
I (x) ⊆ R(x) and

E[f (I (x))] ≥ cF (x)

(this randomized step depends on x)

8 / 26

General framework

1. Create relaxed problem

i) Relax constraints:
F ⊆ 2N polytope P ⊆ [0, 1]N

ii) Extend submodular function:
f F : [0, 1]N → R+

(F (1S) = f (S) ∀S ⊆ N).

2. Maximize F over P x ∈ P

3. Rounding: x I (x) ∈ F
i) x R(x) ⊆ N with

Pr[i ∈ R(x)] = xi

ii) R(x) I (x) ∈ F , with
I (x) ⊆ R(x) and

E[f (I (x))] ≥ cF (x)

(this randomized step depends on x)

8 / 26

General framework

1. Create relaxed problem

i) Relax constraints:
F ⊆ 2N polytope P ⊆ [0, 1]N

ii) Extend submodular function:
f F : [0, 1]N → R+

(F (1S) = f (S) ∀S ⊆ N).

2. Maximize F over P x ∈ P

3. Rounding: x I (x) ∈ F
i) x R(x) ⊆ N with

Pr[i ∈ R(x)] = xi

ii) R(x) I (x) ∈ F , with
I (x) ⊆ R(x) and

E[f (I (x))] ≥ cF (x)

(this randomized step depends on x)

8 / 26

General framework

1. Create relaxed problem

i) Relax constraints:
F ⊆ 2N polytope P ⊆ [0, 1]N

ii) Extend submodular function:
f F : [0, 1]N → R+

(F (1S) = f (S) ∀S ⊆ N).

2. Maximize F over P x ∈ P

3. Rounding: x I (x) ∈ F
i) x R(x) ⊆ N with

Pr[i ∈ R(x)] = xi

ii) R(x) I (x) ∈ F , with
I (x) ⊆ R(x) and

E[f (I (x))] ≥ cF (x)

(this randomized step depends on x)

8 / 26

Shooting for a good extension

I Multilinear extension: F (x) :=
∑
S⊆N

f (S)
∏
i∈S

xi
∏

i∈N\S

(1− xi) = E [f (R(x))], where

R(x) ⊆ N: random set with Pr[i ∈ R(x)] = xi independently for i ∈ N.

• Easy to approximately evaluate through Monte-Carlo sampling.
• Behaves nicely w.r.t. indep. rounding (would lead to constraint violations).

9 / 26

Shooting for a good extension

I Multilinear extension: F (x) :=
∑
S⊆N

f (S)
∏
i∈S

xi
∏

i∈N\S

(1− xi) = E [f (R(x))], where

R(x) ⊆ N: random set with Pr[i ∈ R(x)] = xi independently for i ∈ N.

• Easy to approximately evaluate through Monte-Carlo sampling.
• Behaves nicely w.r.t. indep. rounding (would lead to constraint violations).

I Lovász extension: f L(x) := min

{∑
S⊆N

αS f (S)

∣∣∣∣ ∑
S⊆N,i∈S

αS = xi ,
∑
S⊆N

αS = 1, αS ≥ 0

}
• Convex
• Easy to evaluate
• Hard to maximize

I Concave closure: f +(x) := max

{∑
S⊆N

αS f (S)

∣∣∣∣ ∑
S⊆N,i∈S

αS = xi ,
∑
S⊆N

αS = 1, αS ≥ 0

}
• Concave
• Hard to evaluate

9 / 26

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

Maximizing F over solvable down-closed polytopes P

Definitions

I P is down-closed (or down-monotone) if x ∈ P, y ≤ x ⇒ y ∈ P.

I P is solvable if linear functions can be optimizing efficiently over P.

Our main results here

I We can find y ∈ P with F (y) ≥ 0.25 ·max{F (x) | x ∈ P}.
I We can find y ∈ P with F (y) ≥ 0.325 ·max{F (x) | x ∈ P ∩ {0, 1}N}.

I Next slides: very short sketch of the 0.25-approx due to its simplicity.

I To get some intuition let’s first consider a related 1/3-approx for
unconstrained SFM (which is a variation of an algo of Feige et al. (2007)).

10 / 26

Getting some intuition
A related 1/3-approx for unconstrained SFM

1
3 -approx for unconstrained SFM

1. Find a local opt X ⊆ N: f (X ± i) ≤ f (X) ∀i ∈ N.

2. Find a local opt Y ⊆ N \ X : f (Y ± i) ≤ f (Y) ∀i ∈ N \ X .

3. Return the better of X and Y .

Proof.
I Let Z be a global opt.

I X local opt:

• f (X) ≥ f (X ∪ Z),
• f (X) ≥ f (X ∩ Z).

I Y local opt:

• f (Y) ≥ f (Y ∪ (Z \ X)).

2f (X) + f (Y) ≥ f (X ∩ Z) + f (X ∪ Z) + f (Y ∪ (Z \ X))︸ ︷︷ ︸
≥f (Z\X)

≥ f (Z)

11 / 26

Sketch of the 0.25-approx for down-closed P

0.25-approx

1. Find an (approximate) local opt x of F over P, i.e.,

∇F (x) · (v − x) ≤ 0 ∀v ∈ P.

2. Find an (approximate) local opt y of F over Q = {v ∈ P | v ≤ 1− x},
∇F (y) · (v − y) ≤ 0 ∀v ∈ Q.

3. Return the better of x and y .

12 / 26

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

Contention resolution (CR) schemes
I F (x) = E[f (R(x))] ⇒ independent rounding preserves value in ex-

pectation but is likely to violate constraints.

Plan: I accept lower value for expectation to obtain feasibility,

I maintain “sufficient” independence in rounding process to get
good expectation.

Definition: balanced CR scheme
A c-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(x) with

Pr[i ∈ I] ≥ c · xi ⇔ Pr[i ∈ I | i ∈ R(x)] ≥ c ∀i ∈ N.

Furthermore, the scheme is called

I monotone if

Pr[i ∈ I | R(x) = R1] ≥ Pr[i ∈ I | R(x) = R2] ∀i ∈ R1 ⊆ R2 ⊆ N,

I and strict if
Pr[i ∈ I | i ∈ R(x)] = c ∀i ∈ N.

13 / 26

Contention resolution (CR) schemes
I F (x) = E[f (R(x))] ⇒ independent rounding preserves value in ex-

pectation but is likely to violate constraints.

Plan: I accept lower value for expectation to obtain feasibility,

I maintain “sufficient” independence in rounding process to get
good expectation.

Definition: balanced CR scheme
A c-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(x) with

Pr[i ∈ I] ≥ c · xi ⇔ Pr[i ∈ I | i ∈ R(x)] ≥ c ∀i ∈ N.

Furthermore, the scheme is called

I monotone if

Pr[i ∈ I | R(x) = R1] ≥ Pr[i ∈ I | R(x) = R2] ∀i ∈ R1 ⊆ R2 ⊆ N,

I and strict if
Pr[i ∈ I | i ∈ R(x)] = c ∀i ∈ N.

13 / 26

Contention resolution (CR) schemes
I F (x) = E[f (R(x))] ⇒ independent rounding preserves value in ex-

pectation but is likely to violate constraints.

Plan: I accept lower value for expectation to obtain feasibility,

I maintain “sufficient” independence in rounding process to get
good expectation.

Definition: balanced CR scheme
A c-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(x) with

Pr[i ∈ I] ≥ c · xi ⇔ Pr[i ∈ I | i ∈ R(x)] ≥ c ∀i ∈ N.

Furthermore, the scheme is called

I monotone if

Pr[i ∈ I | R(x) = R1] ≥ Pr[i ∈ I | R(x) = R2] ∀i ∈ R1 ⊆ R2 ⊆ N,

I and strict if
Pr[i ∈ I | i ∈ R(x)] = c ∀i ∈ N.

13 / 26

Rounding guarantees

Theorem (follows from Bansal et al. (2010))

Let x ∈ P, and let I (x) be the output of a monotone and strict c-balanced CR
scheme. Then

E[f (I (x))] ≥ c · F (x).

Remarks

I Strictness is only needed for non-monotone f , and can be avoided by a
simple post-processing of I .

I The rounding procedure is oblivious to f .

14 / 26

Rounding guarantees

Theorem (follows from Bansal et al. (2010))

Let x ∈ P, and let I (x) be the output of a monotone and strict c-balanced CR
scheme. Then

E[f (I (x))] ≥ c · F (x).

Remarks

I Strictness is only needed for non-monotone f , and can be avoided by a
simple post-processing of I .

I The rounding procedure is oblivious to f .

14 / 26

Proof of rounding guarantee (I)
I We number the elements N = [n] := {1, . . . , n}.
I For A ⊆ N, i ∈ N, let fA(i) = f (A + i)− f (A).

E[f (I)] = f (∅) +
n∑

i=1

E [f (I ∩ [i])− f (I ∩ [i − 1])] .

We want to show: E[f (I ∩ [i])− f (I ∩ [i − 1])] ≥ Pr[i ∈ R] · c · E[fR∩[i−1](i)]

This then implies

f (∅) +
n∑

i=1

E[f (I ∩ [i])− f (I∩[i − 1])] ≥ c

[
f (∅) +

n∑
i=1

Pr[i ∈ R]E[fR∩[i−1](i)]

]

= c

[
f (∅) +

n∑
i=1

E[f (R ∩ [i])− f (R ∩ [i − 1])]

]
= c · F (x).

15 / 26

Proof of rounding guarantee (II)

To show: E[f (I ∩ [i])− f (I ∩ [i − 1])] ≥ Pr[i ∈ R] · c · E[fR∩[i−1](i)]

E[f (I ∩ [i])− f (I ∩ [i − 1])] = E[1i∈I fI∩[i−1](i)]

≥ E[1i∈I fR∩[i−1](i)]

≥ ER [EI [1i∈I fR∩[i−1](i) | R]]

= ER [EI [1i∈I | R] fR∩[i−1](i)]

≥ Pr[i ∈ R] · E[Pr[i ∈ I | R]fR∩[i−1](i) | i ∈ R]

On the product space associated with distribution of R conditioned on i ∈ R:
I Pr[i ∈ I | R] is non-decreasing ⇐ monotonicity of CR scheme,
I fR∩[i−1](i) is non-decreasing ⇐ submodularity of f .

⇒ we can apply FKG.

ER [Pr[i ∈ I | R]fR∩[i−1](i) |i ∈ R]

FKG
≥ ER [Pr[i ∈ I | R] | i ∈ R] · ER [fR∩[i−1](i) | i ∈ R]

= Pr[i ∈ I | i ∈ R] · E[fR∩[i−1](i)]

strictness
= c · E[fR∩[i−1](i)].

16 / 26

Combining CR schemes
Often, F is composed of simpler constraints: F = F1 ∩ F2 ⇒ P = P1 ∩ P2.

Goal: combine monotone (and strict) c1-balanced CR scheme for P1 with monotone
(and strict) c2-balanced CR scheme for P2 to obtain one for P.

A simple approach:

I Monotonicity is preserved.

I Resulting CR scheme is c1c2-balanced:

Pr[i ∈ I | i ∈ R(x)] = E[1i∈I1 1i∈I2 | i ∈ R(x)]
FKG

≥ E[1i∈I1 | i ∈ R(x)]︸ ︷︷ ︸
=c1

E[1i∈I2 | i ∈ R(x)]︸ ︷︷ ︸
=c2

.

I Combining k schemes being c-balanced → ck -balanced scheme.
I Our goal: obtain Ω(1/k)-balanced CR scheme.

17 / 26

Combining CR schemes
Often, F is composed of simpler constraints: F = F1 ∩ F2 ⇒ P = P1 ∩ P2.

Goal: combine monotone (and strict) c1-balanced CR scheme for P1 with monotone
(and strict) c2-balanced CR scheme for P2 to obtain one for P.

A simple approach:

I Monotonicity is preserved.

I Resulting CR scheme is c1c2-balanced:

Pr[i ∈ I | i ∈ R(x)] = E[1i∈I1 1i∈I2 | i ∈ R(x)]
FKG

≥ E[1i∈I1 | i ∈ R(x)]︸ ︷︷ ︸
=c1

E[1i∈I2 | i ∈ R(x)]︸ ︷︷ ︸
=c2

.

I Combining k schemes being c-balanced → ck -balanced scheme.
I Our goal: obtain Ω(1/k)-balanced CR scheme.

17 / 26

Combining CR schemes
Often, F is composed of simpler constraints: F = F1 ∩ F2 ⇒ P = P1 ∩ P2.

Goal: combine monotone (and strict) c1-balanced CR scheme for P1 with monotone
(and strict) c2-balanced CR scheme for P2 to obtain one for P.

A simple approach:

I Monotonicity is preserved.

I Resulting CR scheme is c1c2-balanced:

Pr[i ∈ I | i ∈ R(x)] = E[1i∈I1 1i∈I2 | i ∈ R(x)]
FKG

≥ E[1i∈I1 | i ∈ R(x)]︸ ︷︷ ︸
=c1

E[1i∈I2 | i ∈ R(x)]︸ ︷︷ ︸
=c2

.

I Combining k schemes being c-balanced → ck -balanced scheme.
I Our goal: obtain Ω(1/k)-balanced CR scheme.

17 / 26

Combining CR schemes
Often, F is composed of simpler constraints: F = F1 ∩ F2 ⇒ P = P1 ∩ P2.

Goal: combine monotone (and strict) c1-balanced CR scheme for P1 with monotone
(and strict) c2-balanced CR scheme for P2 to obtain one for P.

A simple approach:

I Monotonicity is preserved.

I Resulting CR scheme is c1c2-balanced:

Pr[i ∈ I | i ∈ R(x)] = E[1i∈I1 1i∈I2 | i ∈ R(x)]
FKG

≥ E[1i∈I1 | i ∈ R(x)]︸ ︷︷ ︸
=c1

E[1i∈I2 | i ∈ R(x)]︸ ︷︷ ︸
=c2

.

I Combining k schemes being c-balanced → ck -balanced scheme.
I Our goal: obtain Ω(1/k)-balanced CR scheme.

17 / 26

Combining CR schemes (II)

Definition: (b, c)-balanced CR scheme (b, c ∈ (0, 1])

A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(b · x) with

Pr[i ∈ I | i ∈ R(b · x)] ≥ c ∀i ∈ N.

I A (b, c)-balanced CR scheme is a special case of a bc-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. c → 1 (at the
possible cost of b → 0).

The new plan:

I This approach is stronger in the parallel part.

I Resulting scheme is (b, c1c2)-balanced.

18 / 26

Combining CR schemes (II)

Definition: (b, c)-balanced CR scheme (b, c ∈ (0, 1])

A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(b · x) with

Pr[i ∈ I | i ∈ R(b · x)] ≥ c ∀i ∈ N.

I A (b, c)-balanced CR scheme is a special case of a bc-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. c → 1 (at the
possible cost of b → 0).

The new plan:

I This approach is stronger in the parallel part.

I Resulting scheme is (b, c1c2)-balanced.

18 / 26

Combining CR schemes (II)

Definition: (b, c)-balanced CR scheme (b, c ∈ (0, 1])

A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(b · x) with

Pr[i ∈ I | i ∈ R(b · x)] ≥ c ∀i ∈ N.

I A (b, c)-balanced CR scheme is a special case of a bc-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. c → 1 (at the
possible cost of b → 0).

The new plan:

I This approach is stronger in the parallel part.

I Resulting scheme is (b, c1c2)-balanced.

18 / 26

Combining CR schemes (II)

Definition: (b, c)-balanced CR scheme (b, c ∈ (0, 1])

A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(b · x) with

Pr[i ∈ I | i ∈ R(b · x)] ≥ c ∀i ∈ N.

I A (b, c)-balanced CR scheme is a special case of a bc-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. c → 1 (at the
possible cost of b → 0).

The new plan:

I This approach is stronger in the parallel part.

I Resulting scheme is (b, c1c2)-balanced.

18 / 26

Combining CR schemes (II)

Definition: (b, c)-balanced CR scheme (b, c ∈ (0, 1])

A (b, c)-balanced CR scheme for P is a (random) procedure parametrized by x ∈ P,
that selects a set I ∈ F , I ⊆ R(b · x) with

Pr[i ∈ I | i ∈ R(b · x)] ≥ c ∀i ∈ N.

I A (b, c)-balanced CR scheme is a special case of a bc-balanced CR scheme.

Goal: Create families of monotone (b, c)-balanced CR schemes s.t. c → 1 (at the
possible cost of b → 0).

The new plan:

I This approach is stronger in the parallel part.

I Resulting scheme is (b, c1c2)-balanced.

18 / 26

Existence of strong CR scheme

Results on CR schemes

I (b, 1−e−b

b
)-balanced, monotone and strict CR scheme for matroid constraint, for

b ∈ (0, 1]. This scheme is optimal.

I For any fixed ε > 0: (1− ε, 1− ε)-balanced monot. and strict CR scheme for
knapsack constraint.

I (b, 1− Ω(b))-balanced, monotone and strict CR scheme for UFP.

I (b, 1− 2kb)-balanced, monotone and strict CR scheme for k-sparse PIP.

Putting the pieces together to obtain the claimed results

E.g. to optimize over k matroid constraints and a ` = Ω(1) knapsacks, a c-balanced
CR scheme can be obtaind for

c = b ·
(

1− e−b

b

)k

︸ ︷︷ ︸
matroids

· (1− ε)`︸ ︷︷ ︸
knapsacks

b=1/k
= Ω(1/k).

⇒ α · Ω(1/k) = Ω(1/k)-approx to maximize f over those constraints, where
α = 0.325 is the approximation ratio for maximizing F over P.

19 / 26

Existence of strong CR scheme

Results on CR schemes

I (b, 1−e−b

b
)-balanced, monotone and strict CR scheme for matroid constraint, for

b ∈ (0, 1]. This scheme is optimal.

I For any fixed ε > 0: (1− ε, 1− ε)-balanced monot. and strict CR scheme for
knapsack constraint.

I (b, 1− Ω(b))-balanced, monotone and strict CR scheme for UFP.

I (b, 1− 2kb)-balanced, monotone and strict CR scheme for k-sparse PIP.

Putting the pieces together to obtain the claimed results

E.g. to optimize over k matroid constraints and a ` = Ω(1) knapsacks, a c-balanced
CR scheme can be obtaind for

c = b ·
(

1− e−b

b

)k

︸ ︷︷ ︸
matroids

· (1− ε)`︸ ︷︷ ︸
knapsacks

b=1/k
= Ω(1/k).

⇒ α · Ω(1/k) = Ω(1/k)-approx to maximize f over those constraints, where
α = 0.325 is the approximation ratio for maximizing F over P.

19 / 26

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

Very short introduction to matroids I

Definition: Matroid
A matroid M = (N,F) consists of a finite ground set N and a non-empty family
F ⊆ 2N of subsets of N such that:

i) If I ∈ F and J ⊆ I , then J ∈ F .

ii) If I , J ∈ F and |I | > |J|, then ∃i ∈ I \ J with J ∪ {i} ∈ F .

I The sets in F are called independent sets and are typically described by an
independence oracle.

I Maximal independent sets are called bases.
→ Because of ii) all bases of a matroid have the same cardinality.

Example: graphic matroid

Let G = (V ,E) be an undirected graph. The graphic matroid of G is defined to
be M = (E ,F), where F is the set of all forests of G .

I Greedy algorithm finds a maximum weight independent set.

20 / 26

Very short introduction to matroids I

Definition: Matroid
A matroid M = (N,F) consists of a finite ground set N and a non-empty family
F ⊆ 2N of subsets of N such that:

i) If I ∈ F and J ⊆ I , then J ∈ F .

ii) If I , J ∈ F and |I | > |J|, then ∃i ∈ I \ J with J ∪ {i} ∈ F .

I The sets in F are called independent sets and are typically described by an
independence oracle.

I Maximal independent sets are called bases.
→ Because of ii) all bases of a matroid have the same cardinality.

Example: graphic matroid

Let G = (V ,E) be an undirected graph. The graphic matroid of G is defined to
be M = (E ,F), where F is the set of all forests of G .

I Greedy algorithm finds a maximum weight independent set.

20 / 26

Very short introduction to matroids I

Definition: Matroid
A matroid M = (N,F) consists of a finite ground set N and a non-empty family
F ⊆ 2N of subsets of N such that:

i) If I ∈ F and J ⊆ I , then J ∈ F .

ii) If I , J ∈ F and |I | > |J|, then ∃i ∈ I \ J with J ∪ {i} ∈ F .

I The sets in F are called independent sets and are typically described by an
independence oracle.

I Maximal independent sets are called bases.
→ Because of ii) all bases of a matroid have the same cardinality.

Example: graphic matroid

Let G = (V ,E) be an undirected graph. The graphic matroid of G is defined to
be M = (E ,F), where F is the set of all forests of G .

I Greedy algorithm finds a maximum weight independent set.

20 / 26

Very short introduction to matroids II

The rank function r : 2N → Z+ of a matroid M = (N,F) is defined by:

r(A) = max{|I | | I ⊆ A, I ∈ F}

(BTW, this function is also submodular)

21 / 26

An optimal CR scheme for matroids (I)
We show how to obtain a monotone (1− e−1)-balanced CR scheme. (getting a

(b, 1−e−b

b
)-balanced CR scheme is analogous)

22 / 26

An optimal CR scheme for matroids (I)
We show how to obtain a monotone (1− e−1)-balanced CR scheme. (getting a

(b, 1−e−b

b
)-balanced CR scheme is analogous)

I Let Π be the set of all monotone deterministic CR scheme π : 2N → F .

I We create the best CR scheme being a convex combination of monotone
deterministic schemes → leads to a monotone CR scheme.

22 / 26

An optimal CR scheme for matroids (I)
We show how to obtain a monotone (1− e−1)-balanced CR scheme. (getting a

(b, 1−e−b

b
)-balanced CR scheme is analogous)

I Let Π be the set of all monotone deterministic CR scheme π : 2N → F .

I We create the best CR scheme being a convex combination of monotone
deterministic schemes → leads to a monotone CR scheme.

Let qi,π := PrR [i ∈ π(R(x))].

(LP1)

max c
s.t.

∑
π∈Π qi,πλπ ≥ xic ∀i ∈ N∑

π∈Π λπ = 1
λπ ≥ 0 ∀π ∈ Π

22 / 26

An optimal CR scheme for matroids (I)
We show how to obtain a monotone (1− e−1)-balanced CR scheme. (getting a

(b, 1−e−b

b
)-balanced CR scheme is analogous)

I Let Π be the set of all monotone deterministic CR scheme π : 2N → F .

I We create the best CR scheme being a convex combination of monotone
deterministic schemes → leads to a monotone CR scheme.

Let qi,π := PrR [i ∈ π(R(x))].

(LP1)

max c
s.t.

∑
π∈Π qi,πλπ ≥ xic ∀i ∈ N∑

π∈Π λπ = 1
λπ ≥ 0 ∀π ∈ Π

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

22 / 26

An optimal CR scheme for matroids (II)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

We can (approximately) separate over the dual

I Goal: find π ∈ Π maximizing∑
i∈N

qi,πyi =
∑
i∈N

Pr[i ∈ π(R(x))] · yi = E

[∑
i∈N

1i∈π(R(x)) · yi

]
= E

 ∑
i∈π(R(x))

yi

 .

I
∑

i∈π(R(x))

yi has to be maximized ∀R(x) ⊆ N.

I π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes,
including non-deterministic ones.

I Greedy algorithms are indeed deterministic and monotone.

⇒ The best monotone CR scheme for matroids is a convex combination of greedy
CR schemes, and we can find it (approximately).

How good is it?

23 / 26

An optimal CR scheme for matroids (II)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

We can (approximately) separate over the dual

I Goal: find π ∈ Π maximizing∑
i∈N

qi,πyi =
∑
i∈N

Pr[i ∈ π(R(x))] · yi = E

[∑
i∈N

1i∈π(R(x)) · yi

]
= E

 ∑
i∈π(R(x))

yi

 .
I

∑
i∈π(R(x))

yi has to be maximized ∀R(x) ⊆ N.

I π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes,
including non-deterministic ones.

I Greedy algorithms are indeed deterministic and monotone.

⇒ The best monotone CR scheme for matroids is a convex combination of greedy
CR schemes, and we can find it (approximately).

How good is it?

23 / 26

An optimal CR scheme for matroids (II)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

We can (approximately) separate over the dual

I Goal: find π ∈ Π maximizing∑
i∈N

qi,πyi =
∑
i∈N

Pr[i ∈ π(R(x))] · yi = E

[∑
i∈N

1i∈π(R(x)) · yi

]
= E

 ∑
i∈π(R(x))

yi

 .
I

∑
i∈π(R(x))

yi has to be maximized ∀R(x) ⊆ N.

I π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes,
including non-deterministic ones.

I Greedy algorithms are indeed deterministic and monotone.

⇒ The best monotone CR scheme for matroids is a convex combination of greedy
CR schemes, and we can find it (approximately).

How good is it?

23 / 26

An optimal CR scheme for matroids (II)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

We can (approximately) separate over the dual

I Goal: find π ∈ Π maximizing∑
i∈N

qi,πyi =
∑
i∈N

Pr[i ∈ π(R(x))] · yi = E

[∑
i∈N

1i∈π(R(x)) · yi

]
= E

 ∑
i∈π(R(x))

yi

 .
I

∑
i∈π(R(x))

yi has to be maximized ∀R(x) ⊆ N.

I π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes,
including non-deterministic ones.

I Greedy algorithms are indeed deterministic and monotone.

⇒ The best monotone CR scheme for matroids is a convex combination of greedy
CR schemes, and we can find it (approximately).

How good is it?

23 / 26

An optimal CR scheme for matroids (II)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

We can (approximately) separate over the dual

I Goal: find π ∈ Π maximizing∑
i∈N

qi,πyi =
∑
i∈N

Pr[i ∈ π(R(x))] · yi = E

[∑
i∈N

1i∈π(R(x)) · yi

]
= E

 ∑
i∈π(R(x))

yi

 .
I

∑
i∈π(R(x))

yi has to be maximized ∀R(x) ⊆ N.

I π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes,
including non-deterministic ones.

I Greedy algorithms are indeed deterministic and monotone.

⇒ The best monotone CR scheme for matroids is a convex combination of greedy
CR schemes, and we can find it (approximately).

How good is it?

23 / 26

An optimal CR scheme for matroids (II)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

We can (approximately) separate over the dual

I Goal: find π ∈ Π maximizing∑
i∈N

qi,πyi =
∑
i∈N

Pr[i ∈ π(R(x))] · yi = E

[∑
i∈N

1i∈π(R(x)) · yi

]
= E

 ∑
i∈π(R(x))

yi

 .
I

∑
i∈π(R(x))

yi has to be maximized ∀R(x) ⊆ N.

I π =greedy algorithm w.r.t. weights y maximizes it even among all CR schemes,
including non-deterministic ones.

I Greedy algorithms are indeed deterministic and monotone.

⇒ The best monotone CR scheme for matroids is a convex combination of greedy
CR schemes, and we can find it (approximately).

How good is it?
23 / 26

An optimal CR scheme for matroids (III)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

Goal
I We want to show that optimal dual value is ≥ 1− e−1.

I This is optimal: easy to find examples showing that 6 ∃ (1− e−1 − ε)-balanced
CR scheme. (e.g. uniform matroid of rank one with xi = 1/n for i ∈ N)

Proof procedure

We show that for any dual-feasible y ∈ [0, 1]N , ∃π ∈ Π with
∑

i∈N qi,πyi ≥ 1− e−1.

I Let y ∈ [0, 1]N be dual-feasible, we choose π ∈ Π to be the greedy algorithm
w.r.t. the weights y .∑

i∈N

qi,πyi = E

[∑
i∈π(R(x))

yi

]
= E[ry (R(x))],

where ry is the y -weighted rank function of the underlying matroid.

24 / 26

An optimal CR scheme for matroids (III)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

Goal
I We want to show that optimal dual value is ≥ 1− e−1.

I This is optimal: easy to find examples showing that 6 ∃ (1− e−1 − ε)-balanced
CR scheme. (e.g. uniform matroid of rank one with xi = 1/n for i ∈ N)

Proof procedure

We show that for any dual-feasible y ∈ [0, 1]N , ∃π ∈ Π with
∑

i∈N qi,πyi ≥ 1− e−1.

I Let y ∈ [0, 1]N be dual-feasible, we choose π ∈ Π to be the greedy algorithm
w.r.t. the weights y .∑

i∈N

qi,πyi = E

[∑
i∈π(R(x))

yi

]
= E[ry (R(x))],

where ry is the y -weighted rank function of the underlying matroid.

24 / 26

An optimal CR scheme for matroids (III)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

Goal
I We want to show that optimal dual value is ≥ 1− e−1.

I This is optimal: easy to find examples showing that 6 ∃ (1− e−1 − ε)-balanced
CR scheme. (e.g. uniform matroid of rank one with xi = 1/n for i ∈ N)

Proof procedure

We show that for any dual-feasible y ∈ [0, 1]N , ∃π ∈ Π with
∑

i∈N qi,πyi ≥ 1− e−1.

I Let y ∈ [0, 1]N be dual-feasible, we choose π ∈ Π to be the greedy algorithm
w.r.t. the weights y .∑

i∈N

qi,πyi = E

[∑
i∈π(R(x))

yi

]
= E[ry (R(x))],

where ry is the y -weighted rank function of the underlying matroid.
24 / 26

An optimal CR scheme for matroids (IV)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

∑
i∈N

qi,πyi = E

[∑
i∈π(R(x))

yi

]
= E[ry (R(x))]

≥ (1− e−1)
∑
i∈N

xiyi = 1− e−1.

Theorem (Calinescu et al., 2007; Vondrák, 2007)

Let rw : 2N → R+ be the weighted rank function of a matroid M = (N, I), with
weights w : N → R+, and let v ∈ PM be a point in the matroid polytope. Then

E[rw (R(v))] ≥ (1− e−1)
∑
i∈N

viwi .

I Hence, the optimal dual value is at least 1− e−1.

I ⇒ ∃ a (1− e−1)-balanced and monotone CR-scheme for matroids.

25 / 26

An optimal CR scheme for matroids (IV)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

∑
i∈N

qi,πyi = E

[∑
i∈π(R(x))

yi

]
= E[ry (R(x))] ≥ (1− e−1)

∑
i∈N

xiyi

= 1− e−1.

Theorem (Calinescu et al., 2007; Vondrák, 2007)

Let rw : 2N → R+ be the weighted rank function of a matroid M = (N, I), with
weights w : N → R+, and let v ∈ PM be a point in the matroid polytope. Then

E[rw (R(v))] ≥ (1− e−1)
∑
i∈N

viwi .

I Hence, the optimal dual value is at least 1− e−1.

I ⇒ ∃ a (1− e−1)-balanced and monotone CR-scheme for matroids.

25 / 26

An optimal CR scheme for matroids (IV)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

∑
i∈N

qi,πyi = E

[∑
i∈π(R(x))

yi

]
= E[ry (R(x))] ≥ (1− e−1)

∑
i∈N

xiyi = 1− e−1.

Theorem (Calinescu et al., 2007; Vondrák, 2007)

Let rw : 2N → R+ be the weighted rank function of a matroid M = (N, I), with
weights w : N → R+, and let v ∈ PM be a point in the matroid polytope. Then

E[rw (R(v))] ≥ (1− e−1)
∑
i∈N

viwi .

I Hence, the optimal dual value is at least 1− e−1.

I ⇒ ∃ a (1− e−1)-balanced and monotone CR-scheme for matroids.

25 / 26

An optimal CR scheme for matroids (IV)

(DP1)

min µ
s.t.

∑
i∈N qi,πyi ≤ µ ∀π ∈ Π∑

i∈N xiyi = 1
yi ≥ 0 ∀i ∈ N

∑
i∈N

qi,πyi = E

[∑
i∈π(R(x))

yi

]
= E[ry (R(x))] ≥ (1− e−1)

∑
i∈N

xiyi = 1− e−1.

Theorem (Calinescu et al., 2007; Vondrák, 2007)

Let rw : 2N → R+ be the weighted rank function of a matroid M = (N, I), with
weights w : N → R+, and let v ∈ PM be a point in the matroid polytope. Then

E[rw (R(v))] ≥ (1− e−1)
∑
i∈N

viwi .

I Hence, the optimal dual value is at least 1− e−1.

I ⇒ ∃ a (1− e−1)-balanced and monotone CR-scheme for matroids.

25 / 26

Outline

1 Introduction

2 General framework

3 Maximizing the multilinear extension

4 Rounding through contention resolution schemes

5 An optimal CR-scheme for matroids

6 Conclusions

Conclusions

I The multilinear extension can be maximized up to a constant factor on any
down-closed and solvable polytope.

I Contention resolution schemes provide a modular way for rounding a
fractional point in the context of SFM.

I What is the best possible approximation ratio for maximizing F over P?

I Convex combinations of monotone deterministic CR schemes are in general
not as powerful as randomized CR schemes. How much do we lose?

I What about other extensions than the multilinear one?

I Derandomization?

26 / 26

Thank you!

References I

Bansal, N., Korula, N., Nagarajan, V., and Srinivasan, A. (2010). On k-column
sparse packing programs. In Eisenbrand, F. and Shepherd, F., editors, Integer
Programming and Combinatorial Optimization, volume 6080 of Lecture Notes
in Computer Science, pages 369–382. Springer Berlin / Heidelberg.
10.1007/978-3-642-13036-6 28.

Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. (2007). Maximizing a
submodular set function subject to a matroid constraint. In IPCO ’07:
Proceedings of the 12th international conference on Integer Programming
and Combinatorial Optimization, pages 182–196, Berlin, Heidelberg.
Springer-Verlag.

Calinescu, G., Chekuri, C., Pál, M., and Vondrák, J. (2011). Maximizing a
monotone submodular function subject to a matroid constraint. To appear in
SIAM Journal on Computing.

Feige, U., Mirrokni, V. S., and Vondrák, J. (2007). Maximizing non-monotone
submodular functions. In Proceedings of the 48th Annual IEEE Symposium
on Foundations of Computer Science, pages 461–471, Washington, DC, USA.
IEEE Computer Society.

28 / 26

References II
Kulik, A., Shachnai, H., and Tamir, T. (2011). Approximations for monotone

and non-monotone submodular maximization with knapsack constraints.
http://arxiv.org/abs/1101.2940/v1.

Lee, J., Sviridenko, M., and Vondrák, J. (2009). Submodular maximization over
multiple matroids via generalized exchange properties. In APPROX ’09 /
RANDOM ’09: Proceedings of the 12th International Workshop and 13th
International Workshop on Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 244–257,
Berlin, Heidelberg. Springer-Verlag.

Oveis Gharan, S. and Vondrák, J. (2011). Submodular function maximization by
simulated annealing. In SODA ’11: Proceedings of the Twenty-First Annual
ACM -SIAM Symposium on Discrete Algorithms, pages 1098–1116.

Vondrák, J. (2007). Submodularity in Combinatorial Optimization. PhD thesis,
Charles University.

29 / 26

	Introduction
	Motivation

	General framework
	Maximizing the multilinear extension
	Rounding through contention resolution schemes
	An optimal CR-scheme for matroids
	Conclusions
	References

