Dependent Randomized Rounding on the
Spanning Tree Polytope with Applications
in Multi-Objective Optimization

Rico Zenklusen

Institute for Discrete Optimization, EPFL

Joint work with Chandra Chekuri and Jan Vondrdk



QOutline

@ A short introduction to dependent rounding
e Motivation
e Classical rounding approaches: a review by examples
e Typical goals when designing rounding procedures

@ Randomized swap rounding: rounding on matroid polytopes
e Motivating example
e Randomized swap rounding on the spanning tree polytope
e Example applications
e Some short remarks about submodular functions

€ Conclusion

19



QOutline

@ A short introduction to dependent rounding
e Motivation
e Classical rounding approaches: a review by examples
e Typical goals when designing rounding procedures



Motivation

Many combinatorial problems become easy when relaxing integrality
constraints.

How to profit from fractional solutions?
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Motivation

Many combinatorial problems become easy when relaxing integrality
constraints.

How to profit from fractional solutions?
— One promising approach: Rounding.

Useful problem properties for rounding procedures
> Small integrality gap
> “Weak constraints”
» Fractional solution has

» few fractional values
» fractional components generally have high values

— Still for most problems it is not clear whether and how rounding
procedures can be applied.
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An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: » A finite set U, collection of subsets F = {Si,...,S,} C 2Y.

> {ielp] ={1,....p} |ue S} < lforall ue U.

Task: Find I C [p] with |/| minimum such that Ui¢;S; = U.
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An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: » A finite set U, collection of subsets F = {Si,...,S,} C 2Y.

> {ielp] ={1,....p} |ue S} < lforall ue U.

Task: Find I C [p] with |/| minimum such that Ui¢;S; = U.

min >oxi
i€[p]
LP S ox o >1 Yue U
ielues;
xi >0 Vi e [p]

Rounding step
If x*>1/¢ setittol, elseto0 = [={iep]|x" >1/¢}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality
Y icrues Xi > 1 at least one x; must be > 1/.

i) |S| <£- LP solution.
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An example for randomized rounding (1)

Congestion minimization problem

Given:  An undirected graph G = (V,E), source destination pairs
(s1,t1),- s (Spstp) EV X V.
Task:  For i € [p], find a si-t; path P' C E, such that the congestion
maxece [{i € [p] | e € P'}| is minimized.
min  C
1 if v=s;
Fiet(v)—fF(0 (v)) =4-1 ifv=t Vi€ [p],veV
0 otherwise
P .
> f'(e) <cC Vee E
i=1
f € {0,1}F Vi € [p]
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An example for randomized rounding (1)

Congestion minimization problem

Given:  An undirected graph G = (V,E), source destination pairs
(s1,t1),- s (Spstp) EV X V.
Task:  For i € [p], find a si-t; path P' C E, such that the congestion
maxece [{i € [p] | e € P'}| is minimized.
min C
1 ifv=s;
I (v) = (6~ (v)) =< -1 ifv=t Viepl,veV
0 otherwise
P .
> f'(e) <cC Vec E
i=1
f € [o,1]¢ Vi € [p]

A O(log m/ log log m)-approximation, where m := |E|, can be obtained by
randomly rounding an optimal solution to the above LP.
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An example for randomized rounding (I1)
A O(log m/ log log m)-approximation

1. Determine an optimal solution ' € [0,1]E,i € [p] to the LP.

2. Decompose each f' into at most m paths Pj,...P; from s; to t;,
e, fi= Y0 ailp,.

3. For each i € [p], choose randomly one path P’ out of Pi,..., P},
where P} is chosen with probability o .

4. Return P!,... PP.

S1

o1
PS

ty
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An example for randomized rounding (l11)
Analysis of the algorithm
> Fix an edge e.
> c*(e) := fractional congestion of e.
> C(e) := random congestion of e after rounding, i.e.,
P . i
C(e) = Zleepi, where 1,.pi = {1 ifeep,
=1

> The variables {1.cpi | i € [p]} are independent.
> E[C(e)] = c"(e)

0 otherwise.
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> c*(e) := fractional congestion of e.

> C(e) := random congestion of e after rounding, i.e.,

1 ifee P,
0 otherwise.

P
C(e) = Zleepi, where 1,cpi = {
=1
> The variables {1.cpi | i € [p]} are independent.
> E[C(e)] = c"(e)
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Let Xi,...,Xn be independent random variables taking values in [0,1]. For
w>E[D-", Xi] and 6 > 0 we have:

Pr[ZXi > (1+0)u] < ((Hew) :

19



An example for randomized rounding (l11)
Analysis of the algorithm

Theorem (Chernoff bound)

Let Xi,..., X, be independent random variables taking values in [0,1]. For
w>E[D-7, Xi] and 6 > 0 we have:

5 H
Pr[ZX > (148 < (W) .

/19



An example for randomized rounding (l11)
Analysis of the algorithm

Theorem (Chernoff bound)

Let Xi,..., X, be independent random variables taking values in [0,1]. For
w>E[D-7, Xi] and 6 > 0 we have:

5 H
Pr[ZX > (148 < (W) .

> Xii=1.pi
> u = p(e) = max{c*(e),1} — w is a lower bound of the optimal
congestion.

> 146 :=4logm/loglog m.

/19



An example for randomized rounding (l11)
Analysis of the algorithm

Theorem (Chernoff bound)

Let Xi,..., X, be independent random variables taking values in [0,1]. For
w>E[D-7, Xi] and 6 > 0 we have:

n S H
P X; > (148 < (ufw) :

> Xii=1.pi
> u = p(e) = max{c*(e),1} — w is a lower bound of the optimal
congestion.

> 146 :=4logm/loglog m.

Pr[C(e) > (14 6)u] < (

) <(it)

(1+06)10 1+oye =

4logm
_ (eloglogm\mEn (1 \wEw _ 1
B 4logm — \Vlogm T m?

19



An example for randomized rounding (l11)
Analysis of the algorithm

Theorem (Chernoff bound)

Let Xi,..., X, be independent random variables taking values in [0,1]. For
w>E[D-7, Xi] and 6 > 0 we have:

n S H
P X; > (148 < (ufw) :

> Xii=1.pi
> u = p(e) = max{c*(e),1} — w is a lower bound of the optimal
congestion.

> 146 :=4logm/loglog m.

Pr[C(e) > (14 6)u] < (

) <(i5)

S <
(1+5)1+5 — (1+6)1+5 —

4logm
_ (eloglogm\mEn (1 \wEw _ 1
B 4logm — \Vlogm T m?

> By union bound: Pr[3e € E with C(e) > (1+d)u(e)] <m- % <1/m

19
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Analysis of the algorithm

Theorem (Chernoff bound)

Let Xi,..., X, be independent random variables taking values in [0,1]. For
w>E[D-7, Xi] and 6 > 0 we have:

n S H
P X; > (148 < (ufw) :

> Xii=1.pi
> u = p(e) = max{c*(e),1} — w is a lower bound of the optimal
congestion.

> 146 :=4logm/loglog m.

Pr[C(e) > (14 6)u] < (

) <(i5)

S <
(1+5)1+5 — (1+6)1+5 —

4logm
_ (eloglogm\mEn (1 \wEw _ 1
B 4logm — \Vlogm T m?

> By union bound: Pr[Je € E with C(e) > (1+d)u(e)] <m- % <1/m.
> With probability > 1 —1/m we have a (4log m/ log log m)-approximation.
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Goals when designing rounding procedure?

» Maintain feasibility.
— Can be obtained by careful dependent rounding.
» Rounded point should be “similar” to fractional one.

— Typically obtained by independence of rounding and
Chernoff bounds.
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Multi-criteria spanning tree (1)

Terminology

G = (V, E): undirected graph.

T C 2F: set of all spanning trees.

1y € {0,1}F: incidence vector of the set U C E.
Pst = conv({17 | T € T}): spanning tree polytope.

v

vV VY

Multi-budgeted spanning tree problem
Given: G, a weight function w : E — [0,1], and p length functions
4; . E — [0,1] for i € [p] with corresponding budget B; € Q..
Task: Find spanning tree of minimum weight respecting all budgets.
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Given: G, a weight function w : E — [0,1], and p length functions
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iy A7)
4(T)

<B; Vie€|[p]
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Terminology

G = (V, E): undirected graph.

T C 2E: set of all spanning trees.

1y € {0,1}£: incidence vector of the set U C E.
Pst = conv({17 | T € T}): spanning tree polytope.
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Multi-budgeted spanning tree problem
Given: G, a weight function w : E — [0,1], and p length functions
4; . E — [0,1] for i € [p] with corresponding budget B; € Q..
Task: Find spanning tree of minimum weight respecting all budgets.

min  w(T) min w'x
TeT =N x vertex of Pst

0(T) <B Vielp] Tx =B Yielp]

These constraints are often weak, i.e., it is ok to violate them slightly.

— We then talk of multi-criteria optimization.



Multi-criteria spanning tree (1)

WTX

min
Multi-criteria problem: | x vertexof Pt .
Lix =X B Vie]p]

min w'x

xEPsT
Tx =B Vielp]

LP relaxation
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Multi-criteria spanning tree (1)

Multi-criteria problem:

LP relaxation

min
x vertex of PgT

WTX

('x <B: Vie]p|

min
XEPsT

WTX

14

T

i

x =B Vie [P]

> The LP (with hard constraints) can be solved in polynomial time.
— Let x* be an optimal LP solution.

» We will show how x™ can be rounded to a good spanning tree.
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Main framework

» Drop budget constraints and randomly round x* to a vertex of
Pst close to x*.
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Main framework

» Drop budget constraints and randomly round x* to a vertex of
Pst close to x*.

Problem: defining good rounding steps in Pst is not easy.
Idea: profit from combinatorial knowledge about spanning trees.

> We work on a convex decomposition of the point x* € P to
round: x* = Zfll Bilt., where Ty,..., T, are spanning trees.

> We iteratively merge the spanning trees Ti,..., T, to a single
spanning tree.

11/19



Rounding using the convex decomposition

> We start with x; := x* and iteratively reduce the number of terms in the
convex representation using a Merge operation.

x1 = fily + Boly, + Balry + ... Bl
——
x2 = (B1+ B2)lr, + Bsly + ... Bmlr,

X3 = (Br+ B2+ B3)l7, + ... Bl
Xk = (fol 8/')1T1 o+ Z;ZkJrl Bilr,
Xm = Bi+-+Bm)lr, =17,

| T1:2 = Merge(ﬂly T17ﬂ27 T2)
| Ti3 = Merge(B1 + B2, Ti2, B3, T3)

| Tik = Merge(37! Biy Tuk—1, Brs Tk)

12 /19



Merging two spanning trees by swaps

Algorithm Merge(51, T1, 52, T>)

While (T # T») do
Pick e € T1\ T2 and find f € T, \ Ty such that
Ti—et+feTand Th—f+ecT;
With probability 81/(B1 + 82), {T> + T> —f +e};
Else {Ti+ T1—e+f};
EndWhile
Output T;.
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Concentration bounds (1)

> Assume for simplicity x* = 111, + f217,.
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Concentration bounds (1)
> Assume for simplicity x* = 111, + f217,.

Properties of the Merge procedure
Let y! be the point obtained after applying one merge operation to x*.

i) E[y!] = x".
ii) Exactly two components change and their sum remains constant.

Theorem
From the above properties the following negative correlation property of
a rounded tree T can be derived. For any U C E, we have

> PrlUC T] < [Tecy x*(e),

» PriUNT = 0] < Tecy(d —x*(e)).

Such negative correlation is sufficient to get Chernoff bounds (Panconesi
and Srinivasan [1997]).
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Concentration bounds (I1)

Let £: E — [0,1] and let ¢(x) := >, g xe/(e) for x € [0, 1]E.

ecE
Theorem (Chernoff bounds for swap rounding)

Let T be a random tree obtained by randomized swap rounding. For
w > €(x*) and § > 0 we have:

e5 .
mmnzﬂ+®ﬂé<ajﬁﬁ>'
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> Similar bounds can be shown for the lower tail (and even for
submodular functions).
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Concentration bounds (I1)

Let £: E —[0,1] and let £(x) := Y. xel(e) for x € [0, 1]E.

Theorem (Chernoff bounds for swap rounding)
Let T be a random tree obtained by randomized swap rounding. For
w > €(x*) and § > 0 we have:

65 .
mmnzﬂ+®ﬂé<ajﬁﬁ>'

> Similar bounds can be shown for the lower tail (and even for
submodular functions).

Linear functions do not change much through ran-
domized swap rounding!
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Application to multi-criteria spanning tree

min w’ x
xEPsT
'x <B Vielp]
Theorem

Again, let x* be an optimal so-
lution to this LP.

Let € € [0,1]. It suffices to consider O(1/¢) independent outputs of the swap
rounding algorithm, to obtain with high probability at least one spanning tree

T that is a (1 + ¢, O(log p/ log log p))-approximation for x*, i.e., there is a
constant c(e) such that

w(T)
4(T)

IN

| /\

(1+e)

€)logp
Iog log p

w(x™)
ti(x)

Vi € [p]
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Application to multi-criteria spanning tree

. T
X?A?T WX Again, let x* be an optimal so-
x =B Vielp] lution to this LP.
Theorem

Let € € [0,1]. It suffices to consider O(1/¢) independent outputs of the swap
rounding algorithm, to obtain with high probability at least one spanning tree
T that is a (1 + ¢, O(log p/ log log p))-approximation for x*, i.e., there is a
constant c(e) such that
w(T)

£i(T)

IN

(1 +e)w(x)
SeLlbi(x") Vi€ [p]

Iog log p

| /\

Remarks

> Since we have a (1 + ¢, O(log p/ log log p))-approximation with respect to
x*, we have the same guarantee with respect to OPT.

» The above result holds even if p is not constant.

> If p is constant, a polynomial (1 + ¢, 1 + ¢)-approximation can be
obtained by a preliminary guessing step.
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Proof of (1 + ¢,4log p/ log log p)-approximation

» T := spanning tree obtained from x* by randomized swap rounding.
> 146 :=4logp/loglogp and we assume for simplicity ¢ > 4/p.
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B

Pr[¢i(T) > (1 4+ §)Bj] < ((1—1—&76 < e < 114

1
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Probability that some budget is violated:
Using the union bound:
1

Pri¢i(T) > (1 + 6)¢i(x™) for some i] < p - 2

T =
NN
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Proof of (1 + ¢,4log p/ log log p)-approximation

» T := spanning tree obtained from x* by randomized swap rounding.
> 146 :=4logp/loglogp and we assume for simplicity ¢ > 4/p.

Probability that some budget is violated:
Using the union bound:
1 1
Pri¢i(T) > (14 6)¢i(x™) for some i] < p - Z= 5
Probability that objective function is not fine:
Using Markov's inequality:

Prw(T) > (1 + w(x')] < DL ET Z D] 1 <1-

(1+ e)w(x*) 1+e¢ 2
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Proof of (1 + ¢,4log p/ log log p)-approximation

» T := spanning tree obtained from x* by randomized swap rounding.
> 146 :=4logp/loglogp and we assume for simplicity ¢ > 4/p.

Probability that some budget is violated:
Using the union bound:
Pri¢i(T) > (14 6)¢i(x™) for some i] < p - 1

P =

T =
ENIS

Probability that objective function is not fine:
Using Markov's inequality:
. E[w(T)] Ew(T)] =w(x")| 1 €
p T 1 < ——t7 A = — <1
AT > 1+ WO € 77 gt S <1-3
Probability that objective function or some budget is not ok:
Using union bound on the two probabilities above:

Pr[Tnotfine]ﬁl—%—l—%:l—%.
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Proof of (1 + ¢,4log p/ log log p)-approximation

» T := spanning tree obtained from x* by randomized swap rounding.
> 146 :=4logp/loglogp and we assume for simplicity ¢ > 4/p.

Probability that some budget is violated:
Using the union bound:

Pri¢i(T) > (14 6)¢i(x™) for some i] < p - % = % < 2
Probability that objective function is not fine:
Using Markov's inequality:
. E[w(T)] Ew(T)] =w(x")| 1 €
P LA = <1 Z.
Priw(T) > (1+e)w(x")] < T+ Owlx) 1+e_1 5

Probability that objective function or some budget is not ok:
Using union bound on the two probabilities above:

€, € €
Pr[T not fing] <1— <+ <=1 <.
r[T not fine] < 511 2
> With probability at least £, T is a (1+¢,4log p/ loglog p)-approximation.
> In expectation, O(1/¢) iterations suffice to find a good spanning tree.
O
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A short comment about submodular functions

Definition
Let S be a finite set. A function f : 25 — R is submodular if

F(AU{s}) — f(A) > f(BU{s}) — f(B) YACBCS,seS.
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A short comment about submodular functions

Definition
Let S be a finite set. A function f : 25 — R is submodular if

F(AU{s}) — f(A) > f(BU{s}) — f(B) YACBCS,seS.

» Submodular functions are interesting candidates for utility functions
since they can model diminishing returns.

» Since submodular functions are only defined on a discrete set, an
extension is typically used in LP relaxations. A useful candidate is
the multilinear extension F defined for x € [0,1]F by

o519 (1-0)

» The upper tail concentration bounds of randomized swap rounding
also hold for the above submodular extension.
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Outline

€ Conclusion



Conclusions
» Randomized rounding is a powerful tool in many settings.

» Randomized swap rounding allows to profit from combinatorial
knowledge of the underlying problem by

i) Representing the point to round as a convex combination of
vertices of the underlying polytope.

ii) Applying merging steps on the terms in the convex
combination.

> The spanning tree polytope (or more generally matroid polytopes)
have nice combinatorial properties for applying rounding procedures.

> In which other settings is the general swap rounding framework
useful? (So far, we have some results on matroid intersection and
b-matchings)

» Can the approach be derandomized in some non-trivial settings?
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