
Dependent Randomized Rounding on the
Spanning Tree Polytope with Applications

in Multi-Objective Optimization

Rico Zenklusen

Institute for Discrete Optimization, EPFL

Joint work with Chandra Chekuri and Jan Vondrák

Outline

1 A short introduction to dependent rounding
• Motivation
• Classical rounding approaches: a review by examples
• Typical goals when designing rounding procedures

2 Randomized swap rounding: rounding on matroid polytopes
• Motivating example
• Randomized swap rounding on the spanning tree polytope
• Example applications
• Some short remarks about submodular functions

3 Conclusion

2 / 19

Outline

1 A short introduction to dependent rounding
• Motivation
• Classical rounding approaches: a review by examples
• Typical goals when designing rounding procedures

2 Randomized swap rounding: rounding on matroid polytopes
• Motivating example
• Randomized swap rounding on the spanning tree polytope
• Example applications
• Some short remarks about submodular functions

3 Conclusion

Motivation

Many combinatorial problems become easy when relaxing integrality
constraints.

How to profit from fractional solutions?

→ One promising approach: Rounding.

Useful problem properties for rounding procedures

I Small integrality gap

I “Weak constraints”

I Fractional solution has

I few fractional values
I fractional components generally have high values

→ Still for most problems it is not clear whether and how rounding
procedures can be applied.

3 / 19

Motivation

Many combinatorial problems become easy when relaxing integrality
constraints.

How to profit from fractional solutions?

→ One promising approach: Rounding.

Useful problem properties for rounding procedures

I Small integrality gap

I “Weak constraints”

I Fractional solution has

I few fractional values
I fractional components generally have high values

→ Still for most problems it is not clear whether and how rounding
procedures can be applied.

3 / 19

Motivation

Many combinatorial problems become easy when relaxing integrality
constraints.

How to profit from fractional solutions?

→ One promising approach: Rounding.

Useful problem properties for rounding procedures

I Small integrality gap

I “Weak constraints”

I Fractional solution has

I few fractional values
I fractional components generally have high values

→ Still for most problems it is not clear whether and how rounding
procedures can be applied.

3 / 19

Motivation

Many combinatorial problems become easy when relaxing integrality
constraints.

How to profit from fractional solutions?

→ One promising approach: Rounding.

Useful problem properties for rounding procedures

I Small integrality gap

I “Weak constraints”

I Fractional solution has

I few fractional values
I fractional components generally have high values

→ Still for most problems it is not clear whether and how rounding
procedures can be applied.

3 / 19

An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: I A finite set U, collection of subsets F = {S1, . . . , Sp} ⊆ 2U .

I |{i ∈ [p] := {1, . . . , p}| | u ∈ Si}| ≤ ` for all u ∈ U.

Task: Find I ⊆ [p] with |I | minimum such that ∪i∈ISi = U.

A `-approximation can be obtained by rounding an LP solution.

Rounding step

If x∗i ≥ 1/`, set it to 1, else to 0 ⇒ I = {i ∈ [p] | x∗i ≥ 1/`}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality∑
i∈I :u∈Si

x∗i ≥ 1 at least one xi must be ≥ 1/`.

ii) |S | ≤ ` · LP solution.

4 / 19

An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: I A finite set U, collection of subsets F = {S1, . . . , Sp} ⊆ 2U .

I |{i ∈ [p] := {1, . . . , p}| | u ∈ Si}| ≤ ` for all u ∈ U.

Task: Find I ⊆ [p] with |I | minimum such that ∪i∈ISi = U.

A `-approximation can be obtained by rounding an LP solution.

Rounding step

If x∗i ≥ 1/`, set it to 1, else to 0 ⇒ I = {i ∈ [p] | x∗i ≥ 1/`}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality∑
i∈I :u∈Si

x∗i ≥ 1 at least one xi must be ≥ 1/`.

ii) |S | ≤ ` · LP solution.

4 / 19

An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: I A finite set U, collection of subsets F = {S1, . . . , Sp} ⊆ 2U .

I |{i ∈ [p] := {1, . . . , p}| | u ∈ Si}| ≤ ` for all u ∈ U.

Task: Find I ⊆ [p] with |I | minimum such that ∪i∈ISi = U.

A `-approximation can be obtained by rounding an LP solution.

Rounding step

If x∗i ≥ 1/`, set it to 1, else to 0 ⇒ I = {i ∈ [p] | x∗i ≥ 1/`}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality∑
i∈I :u∈Si

x∗i ≥ 1 at least one xi must be ≥ 1/`.

ii) |S | ≤ ` · LP solution.

4 / 19

An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: I A finite set U, collection of subsets F = {S1, . . . , Sp} ⊆ 2U .

I |{i ∈ [p] := {1, . . . , p}| | u ∈ Si}| ≤ ` for all u ∈ U.

Task: Find I ⊆ [p] with |I | minimum such that ∪i∈ISi = U.

ILP

min
∑
i∈[p]

xi∑
i∈I :u∈Si

xi ≥ 1 ∀u ∈ U

xi ∈ {0, 1} ∀i ∈ [p]

Rounding step

If x∗i ≥ 1/`, set it to 1, else to 0 ⇒ I = {i ∈ [p] | x∗i ≥ 1/`}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality∑
i∈I :u∈Si

x∗i ≥ 1 at least one xi must be ≥ 1/`.

ii) |S | ≤ ` · LP solution.

4 / 19

An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: I A finite set U, collection of subsets F = {S1, . . . , Sp} ⊆ 2U .

I |{i ∈ [p] := {1, . . . , p}| | u ∈ Si}| ≤ ` for all u ∈ U.

Task: Find I ⊆ [p] with |I | minimum such that ∪i∈ISi = U.

LP

min
∑
i∈[p]

xi∑
i∈I :u∈Si

xi ≥ 1 ∀u ∈ U

xi ≥ 0 ∀i ∈ [p]

Rounding step

If x∗i ≥ 1/`, set it to 1, else to 0 ⇒ I = {i ∈ [p] | x∗i ≥ 1/`}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality∑
i∈I :u∈Si

x∗i ≥ 1 at least one xi must be ≥ 1/`.

ii) |S | ≤ ` · LP solution.

4 / 19

An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: I A finite set U, collection of subsets F = {S1, . . . , Sp} ⊆ 2U .

I |{i ∈ [p] := {1, . . . , p}| | u ∈ Si}| ≤ ` for all u ∈ U.

Task: Find I ⊆ [p] with |I | minimum such that ∪i∈ISi = U.

LP

min
∑
i∈[p]

xi∑
i∈I :u∈Si

xi ≥ 1 ∀u ∈ U

xi ≥ 0 ∀i ∈ [p]

Rounding step

If x∗i ≥ 1/`, set it to 1, else to 0 ⇒ I = {i ∈ [p] | x∗i ≥ 1/`}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality∑
i∈I :u∈Si

x∗i ≥ 1 at least one xi must be ≥ 1/`.

ii) |S | ≤ ` · LP solution.

4 / 19

An example for deterministic rounding

(Unweighted) Set Cover with bounded coverage

Given: I A finite set U, collection of subsets F = {S1, . . . , Sp} ⊆ 2U .

I |{i ∈ [p] := {1, . . . , p}| | u ∈ Si}| ≤ ` for all u ∈ U.

Task: Find I ⊆ [p] with |I | minimum such that ∪i∈ISi = U.

LP

min
∑
i∈[p]

xi∑
i∈I :u∈Si

xi ≥ 1 ∀u ∈ U

xi ≥ 0 ∀i ∈ [p]

Rounding step

If x∗i ≥ 1/`, set it to 1, else to 0 ⇒ I = {i ∈ [p] | x∗i ≥ 1/`}.

Approximation quality and feasibility

i) Covering constraints are satisfied since for every inequality∑
i∈I :u∈Si

x∗i ≥ 1 at least one xi must be ≥ 1/`.

ii) |S | ≤ ` · LP solution.

4 / 19

An example for randomized rounding (I)

Congestion minimization problem
Given: An undirected graph G = (V ,E), source destination pairs

(s1, t1), . . . , (sp, tp) ∈ V × V .
Task: For i ∈ [p], find a si -ti path P i ⊆ E , such that the congestion

maxe∈E |{i ∈ [p] | e ∈ P i}| is minimized.

min C

f i (δ+(v))− f i (δ−(v)) =


1 if v = si

−1 if v = ti

0 otherwise

∀i ∈ [p], v ∈ V

p∑
i=1

f i (e) ≤ C ∀e ∈ E

f i ∈ {0, 1}E ∀i ∈ [p]

A O(log m/ log log m)-approximation, where m := |E |, can be obtained by
randomly rounding an optimal solution to the above LP.

5 / 19

An example for randomized rounding (I)

Congestion minimization problem
Given: An undirected graph G = (V ,E), source destination pairs

(s1, t1), . . . , (sp, tp) ∈ V × V .
Task: For i ∈ [p], find a si -ti path P i ⊆ E , such that the congestion

maxe∈E |{i ∈ [p] | e ∈ P i}| is minimized.

min C

f i (δ+(v))− f i (δ−(v)) =


1 if v = si

−1 if v = ti

0 otherwise

∀i ∈ [p], v ∈ V

p∑
i=1

f i (e) ≤ C ∀e ∈ E

f i ∈ [0, 1]E ∀i ∈ [p]

A O(log m/ log log m)-approximation, where m := |E |, can be obtained by
randomly rounding an optimal solution to the above LP.

5 / 19

An example for randomized rounding (II)

A O(log m/ log log m)-approximation

1. Determine an optimal solution f i ∈ [0, 1]E , i ∈ [p] to the LP.

2. Decompose each f i into at most m paths P i
1, . . .P

i
ni from si to ti ,

i.e., f i =
∑ni

k=1 α
i
k1P i

k
.

3. For each i ∈ [p], choose randomly one path P i out of P i
1, . . . ,P

i
k ,

where P i
k is chosen with probability αi

k .

4. Return P1, . . . ,Pp.

6 / 19

An example for randomized rounding (II)

A O(log m/ log log m)-approximation

1. Determine an optimal solution f i ∈ [0, 1]E , i ∈ [p] to the LP.

2. Decompose each f i into at most m paths P i
1, . . .P

i
ni from si to ti ,

i.e., f i =
∑ni

k=1 α
i
k1P i

k
.

3. For each i ∈ [p], choose randomly one path P i out of P i
1, . . . ,P

i
k ,

where P i
k is chosen with probability αi

k .

4. Return P1, . . . ,Pp.

6 / 19

An example for randomized rounding (II)

A O(log m/ log log m)-approximation

1. Determine an optimal solution f i ∈ [0, 1]E , i ∈ [p] to the LP.

2. Decompose each f i into at most m paths P i
1, . . .P

i
ni from si to ti ,

i.e., f i =
∑ni

k=1 α
i
k1P i

k
.

3. For each i ∈ [p], choose randomly one path P i out of P i
1, . . . ,P

i
k ,

where P i
k is chosen with probability αi

k .

4. Return P1, . . . ,Pp.

6 / 19

An example for randomized rounding (II)

A O(log m/ log log m)-approximation

1. Determine an optimal solution f i ∈ [0, 1]E , i ∈ [p] to the LP.

2. Decompose each f i into at most m paths P i
1, . . .P

i
ni from si to ti ,

i.e., f i =
∑ni

k=1 α
i
k1P i

k
.

3. For each i ∈ [p], choose randomly one path P i out of P i
1, . . . ,P

i
k ,

where P i
k is chosen with probability αi

k .

4. Return P1, . . . ,Pp.

6 / 19

An example for randomized rounding (III)
Analysis of the algorithm

I Fix an edge e.

I c∗(e) := fractional congestion of e.

I C(e) := random congestion of e after rounding, i.e.,

C(e) =

p∑
i=1

1e∈P i , where 1e∈P i =

{
1 if e ∈ P i ,

0 otherwise.

I The variables {1e∈P i | i ∈ [p]} are independent.

I E[C(e)] = c∗(e)

Theorem (Chernoff bound)

Let X1, . . . ,Xn be independent random variables taking values in [0, 1]. For
µ ≥ E[

∑n
i=1 Xi] and δ > 0 we have:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

7 / 19

An example for randomized rounding (III)
Analysis of the algorithm

I Fix an edge e.

I c∗(e) := fractional congestion of e.

I C(e) := random congestion of e after rounding, i.e.,

C(e) =

p∑
i=1

1e∈P i , where 1e∈P i =

{
1 if e ∈ P i ,

0 otherwise.

I The variables {1e∈P i | i ∈ [p]} are independent.

I E[C(e)] = c∗(e)

Theorem (Chernoff bound)

Let X1, . . . ,Xn be independent random variables taking values in [0, 1]. For
µ ≥ E[

∑n
i=1 Xi] and δ > 0 we have:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

7 / 19

An example for randomized rounding (III)
Analysis of the algorithm

Theorem (Chernoff bound)

Let X1, . . . ,Xn be independent random variables taking values in [0, 1]. For
µ ≥ E[

∑n
i=1 Xi] and δ > 0 we have:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Xi := 1e∈P i

I µ = µ(e) = max{c∗(e), 1} → µ is a lower bound of the optimal
congestion.

I 1 + δ := 4 log m/ log log m.

Pr[C(e) > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ µ ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log m

4 log m

) 4 log m
log log m

≤
(

1√
log m

) 4 log m
log log m

=
1

m2
.

I By union bound: Pr[∃e ∈ E with C(e) > (1 + δ)µ(e)] ≤ m · 1
m2 ≤ 1/m.

I With probability ≥ 1− 1/m we have a (4 log m/ log log m)-approximation.

7 / 19

An example for randomized rounding (III)
Analysis of the algorithm

Theorem (Chernoff bound)

Let X1, . . . ,Xn be independent random variables taking values in [0, 1]. For
µ ≥ E[

∑n
i=1 Xi] and δ > 0 we have:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Xi := 1e∈P i

I µ = µ(e) = max{c∗(e), 1} → µ is a lower bound of the optimal
congestion.

I 1 + δ := 4 log m/ log log m.

Pr[C(e) > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ µ ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log m

4 log m

) 4 log m
log log m

≤
(

1√
log m

) 4 log m
log log m

=
1

m2
.

I By union bound: Pr[∃e ∈ E with C(e) > (1 + δ)µ(e)] ≤ m · 1
m2 ≤ 1/m.

I With probability ≥ 1− 1/m we have a (4 log m/ log log m)-approximation.

7 / 19

An example for randomized rounding (III)
Analysis of the algorithm

Theorem (Chernoff bound)

Let X1, . . . ,Xn be independent random variables taking values in [0, 1]. For
µ ≥ E[

∑n
i=1 Xi] and δ > 0 we have:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Xi := 1e∈P i

I µ = µ(e) = max{c∗(e), 1} → µ is a lower bound of the optimal
congestion.

I 1 + δ := 4 log m/ log log m.

Pr[C(e) > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ µ ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log m

4 log m

) 4 log m
log log m

≤
(

1√
log m

) 4 log m
log log m

=
1

m2
.

I By union bound: Pr[∃e ∈ E with C(e) > (1 + δ)µ(e)] ≤ m · 1
m2 ≤ 1/m.

I With probability ≥ 1− 1/m we have a (4 log m/ log log m)-approximation.

7 / 19

An example for randomized rounding (III)
Analysis of the algorithm

Theorem (Chernoff bound)

Let X1, . . . ,Xn be independent random variables taking values in [0, 1]. For
µ ≥ E[

∑n
i=1 Xi] and δ > 0 we have:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Xi := 1e∈P i

I µ = µ(e) = max{c∗(e), 1} → µ is a lower bound of the optimal
congestion.

I 1 + δ := 4 log m/ log log m.

Pr[C(e) > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ µ ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log m

4 log m

) 4 log m
log log m

≤
(

1√
log m

) 4 log m
log log m

=
1

m2
.

I By union bound: Pr[∃e ∈ E with C(e) > (1 + δ)µ(e)] ≤ m · 1
m2 ≤ 1/m.

I With probability ≥ 1− 1/m we have a (4 log m/ log log m)-approximation.

7 / 19

An example for randomized rounding (III)
Analysis of the algorithm

Theorem (Chernoff bound)

Let X1, . . . ,Xn be independent random variables taking values in [0, 1]. For
µ ≥ E[

∑n
i=1 Xi] and δ > 0 we have:

Pr[
n∑

i=1

Xi ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Xi := 1e∈P i

I µ = µ(e) = max{c∗(e), 1} → µ is a lower bound of the optimal
congestion.

I 1 + δ := 4 log m/ log log m.

Pr[C(e) > (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ µ ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log m

4 log m

) 4 log m
log log m

≤
(

1√
log m

) 4 log m
log log m

=
1

m2
.

I By union bound: Pr[∃e ∈ E with C(e) > (1 + δ)µ(e)] ≤ m · 1
m2 ≤ 1/m.

I With probability ≥ 1− 1/m we have a (4 log m/ log log m)-approximation.

7 / 19

Goals when designing rounding procedure?

I Maintain feasibility.
→ Can be obtained by careful dependent rounding.

I Rounded point should be “similar” to fractional one.
→ Typically obtained by independence of rounding and

Chernoff bounds.

Main difficulty: these two goals are conflicting.

For example: how to round a point in

I the spanning tree polytope?

I a (poly-)matroid polytpe?

I the matching or b-matching polytope?

I the independent set polytope of the intersection of two
(poly-)matroids?

8 / 19

Goals when designing rounding procedure?

I Maintain feasibility.
→ Can be obtained by careful dependent rounding.

I Rounded point should be “similar” to fractional one.
→ Typically obtained by independence of rounding and

Chernoff bounds.

Main difficulty: these two goals are conflicting.

For example: how to round a point in

I the spanning tree polytope?

I a (poly-)matroid polytpe?

I the matching or b-matching polytope?

I the independent set polytope of the intersection of two
(poly-)matroids?

8 / 19

Goals when designing rounding procedure?

I Maintain feasibility.
→ Can be obtained by careful dependent rounding.

I Rounded point should be “similar” to fractional one.
→ Typically obtained by independence of rounding and

Chernoff bounds.

Main difficulty: these two goals are conflicting.

For example: how to round a point in

I the spanning tree polytope?

I a (poly-)matroid polytpe?

I the matching or b-matching polytope?

I the independent set polytope of the intersection of two
(poly-)matroids?

8 / 19

Goals when designing rounding procedure?

I Maintain feasibility.
→ Can be obtained by careful dependent rounding.

I Rounded point should be “similar” to fractional one.
→ Typically obtained by independence of rounding and

Chernoff bounds.

Main difficulty: these two goals are conflicting.

For example: how to round a point in

I the spanning tree polytope?

I a (poly-)matroid polytpe?

I the matching or b-matching polytope?

I the independent set polytope of the intersection of two
(poly-)matroids?

8 / 19

Outline

1 A short introduction to dependent rounding
• Motivation
• Classical rounding approaches: a review by examples
• Typical goals when designing rounding procedures

2 Randomized swap rounding: rounding on matroid polytopes
• Motivating example
• Randomized swap rounding on the spanning tree polytope
• Example applications
• Some short remarks about submodular functions

3 Conclusion

Multi-criteria spanning tree (I)

Terminology

I G = (V ,E): undirected graph.

I T ⊆ 2E : set of all spanning trees.

I 1U ∈ {0, 1}E : incidence vector of the set U ⊆ E .

I PST = conv({1T | T ∈ T }): spanning tree polytope.

Multi-budgeted spanning tree problem
Given: G , a weight function w : E → [0, 1], and p length functions

`i : E → [0, 1] for i ∈ [p] with corresponding budget Bi ∈ Q+.

Task: Find spanning tree of minimum weight respecting all budgets.

min
T∈T

w(T)

`i (T) ≤ Bi ∀i ∈ [p]
⇔

min
x vertex of PST

wT x

`Ti x ≤ Bi ∀i ∈ [p]

These constraints are often weak, i.e., it is ok to violate them slightly.

→ We then talk of multi-criteria optimization.

9 / 19

Multi-criteria spanning tree (I)

Terminology

I G = (V ,E): undirected graph.

I T ⊆ 2E : set of all spanning trees.

I 1U ∈ {0, 1}E : incidence vector of the set U ⊆ E .

I PST = conv({1T | T ∈ T }): spanning tree polytope.

Multi-budgeted spanning tree problem
Given: G , a weight function w : E → [0, 1], and p length functions

`i : E → [0, 1] for i ∈ [p] with corresponding budget Bi ∈ Q+.

Task: Find spanning tree of minimum weight respecting all budgets.

min
T∈T

w(T)

`i (T) ≤ Bi ∀i ∈ [p]
⇔

min
x vertex of PST

wT x

`Ti x ≤ Bi ∀i ∈ [p]

These constraints are often weak, i.e., it is ok to violate them slightly.

→ We then talk of multi-criteria optimization.

9 / 19

Multi-criteria spanning tree (I)

Terminology

I G = (V ,E): undirected graph.

I T ⊆ 2E : set of all spanning trees.

I 1U ∈ {0, 1}E : incidence vector of the set U ⊆ E .

I PST = conv({1T | T ∈ T }): spanning tree polytope.

Multi-budgeted spanning tree problem
Given: G , a weight function w : E → [0, 1], and p length functions

`i : E → [0, 1] for i ∈ [p] with corresponding budget Bi ∈ Q+.

Task: Find spanning tree of minimum weight respecting all budgets.

min
T∈T

w(T)

`i (T) ≤ Bi ∀i ∈ [p]
⇔

min
x vertex of PST

wT x

`Ti x � Bi ∀i ∈ [p]

These constraints are often weak, i.e., it is ok to violate them slightly.

→ We then talk of multi-criteria optimization.

9 / 19

Multi-criteria spanning tree (II)

Multi-criteria problem:
min

x vertex of PST

wT x

`Ti x � Bi ∀i ∈ [p]

LP relaxation−−−−−−−→
min
x∈PST

wT x

`Ti x � Bi ∀i ∈ [p]

I The LP (with hard constraints) can be solved in polynomial time.
→ Let x∗ be an optimal LP solution.

I We will show how x∗ can be rounded to a good spanning tree.

10 / 19

Multi-criteria spanning tree (II)

Multi-criteria problem:
min

x vertex of PST

wT x

`Ti x � Bi ∀i ∈ [p]

LP relaxation−−−−−−−→
min
x∈PST

wT x

`Ti x � Bi ∀i ∈ [p]

I The LP (with hard constraints) can be solved in polynomial time.
→ Let x∗ be an optimal LP solution.

I We will show how x∗ can be rounded to a good spanning tree.

10 / 19

Multi-criteria spanning tree (II)

Multi-criteria problem:
min

x vertex of PST

wT x

`Ti x � Bi ∀i ∈ [p]

LP relaxation−−−−−−−→
min
x∈PST

wT x

`Ti x � Bi ∀i ∈ [p]

I The LP (with hard constraints) can be solved in polynomial time.
→ Let x∗ be an optimal LP solution.

I We will show how x∗ can be rounded to a good spanning tree.

10 / 19

Main framework

I Drop budget constraints and randomly round x∗ to a vertex of
PST close to x∗.

Problem: defining good rounding steps in PST is not easy.
Idea: profit from combinatorial knowledge about spanning trees.

I We work on a convex decomposition of the point x∗ ∈ P to
round: x∗ =

∑m
i=1 βi1Ti , where T1, . . . ,Tm are spanning trees.

I We iteratively merge the spanning trees T1, . . . ,Tm to a single
spanning tree.

11 / 19

Main framework

I Drop budget constraints and randomly round x∗ to a vertex of
PST close to x∗.

Problem: defining good rounding steps in PST is not easy.
Idea: profit from combinatorial knowledge about spanning trees.

I We work on a convex decomposition of the point x∗ ∈ P to
round: x∗ =

∑m
i=1 βi1Ti , where T1, . . . ,Tm are spanning trees.

I We iteratively merge the spanning trees T1, . . . ,Tm to a single
spanning tree.

11 / 19

Main framework

I Drop budget constraints and randomly round x∗ to a vertex of
PST close to x∗.

Problem: defining good rounding steps in PST is not easy.
Idea: profit from combinatorial knowledge about spanning trees.

I We work on a convex decomposition of the point x∗ ∈ P to
round: x∗ =

∑m
i=1 βi1Ti , where T1, . . . ,Tm are spanning trees.

I We iteratively merge the spanning trees T1, . . . ,Tm to a single
spanning tree.

11 / 19

Main framework

I Drop budget constraints and randomly round x∗ to a vertex of
PST close to x∗.

Problem: defining good rounding steps in PST is not easy.
Idea: profit from combinatorial knowledge about spanning trees.

I We work on a convex decomposition of the point x∗ ∈ P to
round: x∗ =

∑m
i=1 βi1Ti , where T1, . . . ,Tm are spanning trees.

I We iteratively merge the spanning trees T1, . . . ,Tm to a single
spanning tree.

11 / 19

Rounding using the convex decomposition

I We start with x1 := x∗ and iteratively reduce the number of terms in the
convex representation using a Merge operation.

x1 = β11T1 + β21T2︸ ︷︷ ︸+ β31T3 + . . . βm1Tm

x2 = (β1 + β2)1T1:2 + β31T3︸ ︷︷ ︸+ . . . βm1Tm | T1:2 = Merge(β1,T1, β2,T2)

x3 = (β1 + β2 + β3)1T1:3 + . . . βm1Tm | T1:3 = Merge(β1 + β2,T1:2, β3,T3)

...

xk = (
∑k

i=1 βi)1T1:k +
∑m

i=k+1 βi1Ti | T1:k = Merge(
∑k−1

i=1 βi ,T1:k−1, βk ,Tk)
...

xm = (β1 + · · ·+ βm)1T1:m = 1T1:m

12 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Merging two spanning trees by swaps

Algorithm Merge(β1,T1, β2,T2)

While (T1 6= T2) do
Pick e ∈ T1 \ T2 and find f ∈ T2 \ T1 such that

T1 − e + f ∈ T and T2 − f + e ∈ T ;
With probability β1/(β1 + β2), {T2 ← T2 − f + e};

Else {T1 ← T1 − e + f };
EndWhile
Output T1.

13 / 19

Concentration bounds (I)
I Assume for simplicity x∗ = β11T1 + β21T2 .

Properties of the Merge procedure

Let y1 be the point obtained after applying one merge operation to x∗.

i) E[y1] = x∗.

ii) Exactly two components change and their sum remains constant.

Theorem
From the above properties the following negative correlation property of
a rounded tree T can be derived. For any U ⊆ E , we have

I Pr[U ⊆ T] ≤
∏

e∈U x∗(e),

I Pr[U ∩ T = ∅] ≤
∏

e∈U(1− x∗(e)).

Such negative correlation is sufficient to get Chernoff bounds (Panconesi
and Srinivasan [1997]).

14 / 19

Concentration bounds (I)
I Assume for simplicity x∗ = β11T1 + β21T2 .

Properties of the Merge procedure

Let y1 be the point obtained after applying one merge operation to x∗.

i) E[y1] = x∗.

ii) Exactly two components change and their sum remains constant.

Theorem
From the above properties the following negative correlation property of
a rounded tree T can be derived. For any U ⊆ E , we have

I Pr[U ⊆ T] ≤
∏

e∈U x∗(e),

I Pr[U ∩ T = ∅] ≤
∏

e∈U(1− x∗(e)).

Such negative correlation is sufficient to get Chernoff bounds (Panconesi
and Srinivasan [1997]).

14 / 19

Concentration bounds (I)
I Assume for simplicity x∗ = β11T1 + β21T2 .

Properties of the Merge procedure

Let y1 be the point obtained after applying one merge operation to x∗.

i) E[y1] = x∗.

ii) Exactly two components change and their sum remains constant.

Theorem
From the above properties the following negative correlation property of
a rounded tree T can be derived. For any U ⊆ E , we have

I Pr[U ⊆ T] ≤
∏

e∈U x∗(e),

I Pr[U ∩ T = ∅] ≤
∏

e∈U(1− x∗(e)).

Such negative correlation is sufficient to get Chernoff bounds (Panconesi
and Srinivasan [1997]).

14 / 19

Concentration bounds (I)
I Assume for simplicity x∗ = β11T1 + β21T2 .

Properties of the Merge procedure

Let y1 be the point obtained after applying one merge operation to x∗.

i) E[y1] = x∗.

ii) Exactly two components change and their sum remains constant.

Theorem
From the above properties the following negative correlation property of
a rounded tree T can be derived. For any U ⊆ E , we have

I Pr[U ⊆ T] ≤
∏

e∈U x∗(e),

I Pr[U ∩ T = ∅] ≤
∏

e∈U(1− x∗(e)).

Such negative correlation is sufficient to get Chernoff bounds (Panconesi
and Srinivasan [1997]).

14 / 19

Concentration bounds (II)

Let ` : E → [0, 1] and let `(x) :=
∑

e∈E xe`(e) for x ∈ [0, 1]E .

Theorem (Chernoff bounds for swap rounding)

Let T be a random tree obtained by randomized swap rounding. For
µ ≥ `(x∗) and δ > 0 we have:

Pr[`(T) ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Similar bounds can be shown for the lower tail (and even for
submodular functions).

Linear functions do not change much through ran-
domized swap rounding!

15 / 19

Concentration bounds (II)

Let ` : E → [0, 1] and let `(x) :=
∑

e∈E xe`(e) for x ∈ [0, 1]E .

Theorem (Chernoff bounds for swap rounding)

Let T be a random tree obtained by randomized swap rounding. For
µ ≥ `(x∗) and δ > 0 we have:

Pr[`(T) ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Similar bounds can be shown for the lower tail (and even for
submodular functions).

Linear functions do not change much through ran-
domized swap rounding!

15 / 19

Concentration bounds (II)

Let ` : E → [0, 1] and let `(x) :=
∑

e∈E xe`(e) for x ∈ [0, 1]E .

Theorem (Chernoff bounds for swap rounding)

Let T be a random tree obtained by randomized swap rounding. For
µ ≥ `(x∗) and δ > 0 we have:

Pr[`(T) ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

I Similar bounds can be shown for the lower tail (and even for
submodular functions).

Linear functions do not change much through ran-
domized swap rounding!

15 / 19

Application to multi-criteria spanning tree

min
x∈PST

wT x

`Ti x � Bi ∀i ∈ [p]
→ Again, let x∗ be an optimal so-

lution to this LP.

Theorem
Let ε ∈ [0, 1]. It suffices to consider O(1/ε) independent outputs of the swap
rounding algorithm, to obtain with high probability at least one spanning tree
T that is a (1 + ε,O(log p/ log log p))-approximation for x∗, i.e., there is a
constant c(ε) such that

w(T) ≤ (1 + ε)w(x∗)

`i (T) ≤ c(ε) log p
log log p

`i (x∗) ∀i ∈ [p]

Remarks

I Since we have a (1 + ε,O(log p/ log log p))-approximation with respect to
x∗, we have the same guarantee with respect to OPT.

I The above result holds even if p is not constant.

I If p is constant, a polynomial (1 + ε, 1 + ε)-approximation can be
obtained by a preliminary guessing step.

16 / 19

Application to multi-criteria spanning tree

min
x∈PST

wT x

`Ti x � Bi ∀i ∈ [p]
→ Again, let x∗ be an optimal so-

lution to this LP.

Theorem
Let ε ∈ [0, 1]. It suffices to consider O(1/ε) independent outputs of the swap
rounding algorithm, to obtain with high probability at least one spanning tree
T that is a (1 + ε,O(log p/ log log p))-approximation for x∗, i.e., there is a
constant c(ε) such that

w(T) ≤ (1 + ε)w(x∗)

`i (T) ≤ c(ε) log p
log log p

`i (x∗) ∀i ∈ [p]

Remarks

I Since we have a (1 + ε,O(log p/ log log p))-approximation with respect to
x∗, we have the same guarantee with respect to OPT.

I The above result holds even if p is not constant.

I If p is constant, a polynomial (1 + ε, 1 + ε)-approximation can be
obtained by a preliminary guessing step.

16 / 19

Proof of (1 + ε, 4 log p/ log log p)-approximation
I T := spanning tree obtained from x∗ by randomized swap rounding.

I 1 + δ := 4 log p/ log log p and we assume for simplicity ε ≥ 4/p.

Probability that budget i is violated:
Using Chernoff bound for swap rounding:

Pr[`i (T) > (1 + δ)Bi] ≤
(

eδ

(1 + δ)1+δ

)Bi Bi ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log p

4 log p

) 4 log p
log log p

≤
(

1√
log p

) 4 log p
log log p

=
1

p2
.

Probability that some budget is violated:
Using the union bound:

Pr[`i (T) > (1 + δ)`i (x∗) for some i] ≤ p · 1

p2
=

1

p
≤ ε

4
.

Probability that objective function is not fine:
Using Markov’s inequality:

Pr[w(T) > (1 + ε)w(x∗)] ≤ E[w(T)]

(1 + ε)w(x∗)

E[w(T)] = w(x∗)

=
1

1 + ε
≤ 1− ε

2
.

17 / 19

Proof of (1 + ε, 4 log p/ log log p)-approximation
I T := spanning tree obtained from x∗ by randomized swap rounding.

I 1 + δ := 4 log p/ log log p and we assume for simplicity ε ≥ 4/p.

Probability that budget i is violated:
Using Chernoff bound for swap rounding:

Pr[`i (T) > (1 + δ)Bi] ≤
(

eδ

(1 + δ)1+δ

)Bi Bi ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log p

4 log p

) 4 log p
log log p

≤
(

1√
log p

) 4 log p
log log p

=
1

p2
.

Probability that some budget is violated:
Using the union bound:

Pr[`i (T) > (1 + δ)`i (x∗) for some i] ≤ p · 1

p2
=

1

p
≤ ε

4
.

Probability that objective function is not fine:
Using Markov’s inequality:

Pr[w(T) > (1 + ε)w(x∗)] ≤ E[w(T)]

(1 + ε)w(x∗)

E[w(T)] = w(x∗)

=
1

1 + ε
≤ 1− ε

2
.

17 / 19

Proof of (1 + ε, 4 log p/ log log p)-approximation
I T := spanning tree obtained from x∗ by randomized swap rounding.

I 1 + δ := 4 log p/ log log p and we assume for simplicity ε ≥ 4/p.

Probability that budget i is violated:
Using Chernoff bound for swap rounding:

Pr[`i (T) > (1 + δ)Bi] ≤
(

eδ

(1 + δ)1+δ

)Bi Bi ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log p

4 log p

) 4 log p
log log p

≤
(

1√
log p

) 4 log p
log log p

=
1

p2
.

Probability that some budget is violated:
Using the union bound:

Pr[`i (T) > (1 + δ)`i (x∗) for some i] ≤ p · 1

p2
=

1

p
≤ ε

4
.

Probability that objective function is not fine:
Using Markov’s inequality:

Pr[w(T) > (1 + ε)w(x∗)] ≤ E[w(T)]

(1 + ε)w(x∗)

E[w(T)] = w(x∗)

=
1

1 + ε
≤ 1− ε

2
.

17 / 19

Proof of (1 + ε, 4 log p/ log log p)-approximation
I T := spanning tree obtained from x∗ by randomized swap rounding.

I 1 + δ := 4 log p/ log log p and we assume for simplicity ε ≥ 4/p.

Probability that budget i is violated:
Using Chernoff bound for swap rounding:

Pr[`i (T) > (1 + δ)Bi] ≤
(

eδ

(1 + δ)1+δ

)Bi Bi ≥ 1

≤ eδ

(1 + δ)1+δ
≤
(

e

1 + δ

)1+δ

=

(
e log log p

4 log p

) 4 log p
log log p

≤
(

1√
log p

) 4 log p
log log p

=
1

p2
.

Probability that some budget is violated:
Using the union bound:

Pr[`i (T) > (1 + δ)`i (x∗) for some i] ≤ p · 1

p2
=

1

p
≤ ε

4
.

Probability that objective function is not fine:
Using Markov’s inequality:

Pr[w(T) > (1 + ε)w(x∗)] ≤ E[w(T)]

(1 + ε)w(x∗)

E[w(T)] = w(x∗)

=
1

1 + ε
≤ 1− ε

2
.

17 / 19

Proof of (1 + ε, 4 log p/ log log p)-approximation
I T := spanning tree obtained from x∗ by randomized swap rounding.

I 1 + δ := 4 log p/ log log p and we assume for simplicity ε ≥ 4/p.

Probability that some budget is violated:
Using the union bound:

Pr[`i (T) > (1 + δ)`i (x∗) for some i] ≤ p · 1

p2
=

1

p
≤ ε

4
.

Probability that objective function is not fine:
Using Markov’s inequality:

Pr[w(T) > (1 + ε)w(x∗)] ≤ E[w(T)]

(1 + ε)w(x∗)

E[w(T)] = w(x∗)

=
1

1 + ε
≤ 1− ε

2
.

Probability that objective function or some budget is not ok:
Using union bound on the two probabilities above:

Pr[T not fine] ≤ 1− ε

2
+
ε

4
= 1− ε

4
.

I With probability at least ε
4
, T is a (1 + ε, 4 log p/ log log p)-approximation.

I In expectation, O(1/ε) iterations suffice to find a good spanning tree.

17 / 19

Proof of (1 + ε, 4 log p/ log log p)-approximation
I T := spanning tree obtained from x∗ by randomized swap rounding.

I 1 + δ := 4 log p/ log log p and we assume for simplicity ε ≥ 4/p.

Probability that some budget is violated:
Using the union bound:

Pr[`i (T) > (1 + δ)`i (x∗) for some i] ≤ p · 1

p2
=

1

p
≤ ε

4
.

Probability that objective function is not fine:
Using Markov’s inequality:

Pr[w(T) > (1 + ε)w(x∗)] ≤ E[w(T)]

(1 + ε)w(x∗)

E[w(T)] = w(x∗)

=
1

1 + ε
≤ 1− ε

2
.

Probability that objective function or some budget is not ok:
Using union bound on the two probabilities above:

Pr[T not fine] ≤ 1− ε

2
+
ε

4
= 1− ε

4
.

I With probability at least ε
4
, T is a (1 + ε, 4 log p/ log log p)-approximation.

I In expectation, O(1/ε) iterations suffice to find a good spanning tree.

17 / 19

Proof of (1 + ε, 4 log p/ log log p)-approximation
I T := spanning tree obtained from x∗ by randomized swap rounding.

I 1 + δ := 4 log p/ log log p and we assume for simplicity ε ≥ 4/p.

Probability that some budget is violated:
Using the union bound:

Pr[`i (T) > (1 + δ)`i (x∗) for some i] ≤ p · 1

p2
=

1

p
≤ ε

4
.

Probability that objective function is not fine:
Using Markov’s inequality:

Pr[w(T) > (1 + ε)w(x∗)] ≤ E[w(T)]

(1 + ε)w(x∗)

E[w(T)] = w(x∗)

=
1

1 + ε
≤ 1− ε

2
.

Probability that objective function or some budget is not ok:
Using union bound on the two probabilities above:

Pr[T not fine] ≤ 1− ε

2
+
ε

4
= 1− ε

4
.

I With probability at least ε
4
, T is a (1 + ε, 4 log p/ log log p)-approximation.

I In expectation, O(1/ε) iterations suffice to find a good spanning tree.

17 / 19

A short comment about submodular functions

Definition
Let S be a finite set. A function f : 2S → R is submodular if

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B) ∀A ⊆ B ⊆ S , s ∈ S .

I Submodular functions are interesting candidates for utility functions
since they can model diminishing returns.

I Since submodular functions are only defined on a discrete set, an
extension is typically used in LP relaxations. A useful candidate is
the multilinear extension F defined for x ∈ [0, 1]E by

F (x) =
∑
R⊆S

(∏
i∈R

xi

)(∏
i 6∈R

(1− xi)

)
.

I The upper tail concentration bounds of randomized swap rounding
also hold for the above submodular extension.

18 / 19

A short comment about submodular functions

Definition
Let S be a finite set. A function f : 2S → R is submodular if

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B) ∀A ⊆ B ⊆ S , s ∈ S .

I Submodular functions are interesting candidates for utility functions
since they can model diminishing returns.

I Since submodular functions are only defined on a discrete set, an
extension is typically used in LP relaxations. A useful candidate is
the multilinear extension F defined for x ∈ [0, 1]E by

F (x) =
∑
R⊆S

(∏
i∈R

xi

)(∏
i 6∈R

(1− xi)

)
.

I The upper tail concentration bounds of randomized swap rounding
also hold for the above submodular extension.

18 / 19

A short comment about submodular functions

Definition
Let S be a finite set. A function f : 2S → R is submodular if

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B) ∀A ⊆ B ⊆ S , s ∈ S .

I Submodular functions are interesting candidates for utility functions
since they can model diminishing returns.

I Since submodular functions are only defined on a discrete set, an
extension is typically used in LP relaxations. A useful candidate is
the multilinear extension F defined for x ∈ [0, 1]E by

F (x) =
∑
R⊆S

(∏
i∈R

xi

)(∏
i 6∈R

(1− xi)

)
.

I The upper tail concentration bounds of randomized swap rounding
also hold for the above submodular extension.

18 / 19

A short comment about submodular functions

Definition
Let S be a finite set. A function f : 2S → R is submodular if

f (A ∪ {s})− f (A) ≥ f (B ∪ {s})− f (B) ∀A ⊆ B ⊆ S , s ∈ S .

I Submodular functions are interesting candidates for utility functions
since they can model diminishing returns.

I Since submodular functions are only defined on a discrete set, an
extension is typically used in LP relaxations. A useful candidate is
the multilinear extension F defined for x ∈ [0, 1]E by

F (x) =
∑
R⊆S

(∏
i∈R

xi

)(∏
i 6∈R

(1− xi)

)
.

I The upper tail concentration bounds of randomized swap rounding
also hold for the above submodular extension.

18 / 19

Outline

1 A short introduction to dependent rounding
• Motivation
• Classical rounding approaches: a review by examples
• Typical goals when designing rounding procedures

2 Randomized swap rounding: rounding on matroid polytopes
• Motivating example
• Randomized swap rounding on the spanning tree polytope
• Example applications
• Some short remarks about submodular functions

3 Conclusion

Conclusions
I Randomized rounding is a powerful tool in many settings.

I Randomized swap rounding allows to profit from combinatorial
knowledge of the underlying problem by

i) Representing the point to round as a convex combination of
vertices of the underlying polytope.

ii) Applying merging steps on the terms in the convex
combination.

I The spanning tree polytope (or more generally matroid polytopes)
have nice combinatorial properties for applying rounding procedures.

I In which other settings is the general swap rounding framework
useful? (So far, we have some results on matroid intersection and
b-matchings)

I Can the approach be derandomized in some non-trivial settings?

19 / 19

References

A. Panconesi and A. Srinivasan. Randomized distributed edge coloring
via an extension of the chernoff–hoeffding bounds. SIAM Journal on
Computing, 26(2):350–368, 1997. ISSN 0097-5397. doi:
http://dx.doi.org/10.1137/S0097539793250767.

	A short introduction to dependent rounding
	Motivation
	Classical rounding approaches: a review by examples
	Typical goals when designing rounding procedures

	Randomized swap rounding: rounding on matroid polytopes
	Motivating example
	Randomized swap rounding on the spanning tree polytope
	Example applications
	Some short remarks about submodular functions

	Conclusion
	References

